Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form

A

a - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
Estimated parameters of linear single dimensional function
a - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
Estimated parameters of linear single dimensional function.
a - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
Estimated parameters of single dimensional function.
a - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
Estimated "a" parameter of line following equation y = a + b*x
a - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Lower limit of integration.
a - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
Lower limit of integration.
a - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Lower limit of integration.
a - Variable in class com.irurueta.numerical.integration.MidPointQuadrature
Lower limit of integration.
a - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Lower limit of integration.
a - Variable in class com.irurueta.numerical.integration.TrapezoidalQuadrature
Lower limit of integration.
ACCURATE_MAXIMUM_LIKELIHOOD_ESTIMATOR - Enum constant in enum class com.irurueta.numerical.MaximumLikelihoodEstimatorMethod
MLE method that refines the histogram method by using Gaussian interpolation.
AccurateInterpolatingPolynomialEstimator - Class in com.irurueta.numerical.interpolation
Estimates coefficients of a polynomial passing through provided set of x and y points.
AccurateInterpolatingPolynomialEstimator() - Constructor for class com.irurueta.numerical.interpolation.AccurateInterpolatingPolynomialEstimator
 
AccurateMaximumLikelihoodEstimator - Class in com.irurueta.numerical
Class to estimate the most likely value from a series of samples assumed to be normally distributed.
AccurateMaximumLikelihoodEstimator() - Constructor for class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Empty constructor.
AccurateMaximumLikelihoodEstimator(double[], double, boolean) - Constructor for class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Constructor
AccurateMaximumLikelihoodEstimator(double, boolean) - Constructor for class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Constructor.
AccurateMaximumLikelihoodEstimator(double, double, double[], double, boolean) - Constructor for class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Constructor.
AccurateMaximumLikelihoodEstimator.EvaluatorListener - Class in com.irurueta.numerical
Internal class used by the BrentSingleOptimizer in order to evaluate the aggregation of Gaussians for all the samples in input data array with a high degree of precision.
add(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Adds another polynomial to this polynomial.
add(Polynomial, Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Adds this polynomial to another one and stores the result into provided instance.
addAndReturnNew(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Adds this polynomial to another one and returns a new polynomial as a result.
adjustCovariance - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Indicates whether covariance must be adjusted or not.
adjustCovariance - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Indicates whether covariance must be adjusted or not.
adjustCovariance - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Indicates whether covariance must be adjusted or not.
adjustCovariance() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Adjusts covariance.
adjustCovariance() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Adjusts covariance.
adjustCovariance() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Adjusts covariance.
afunc - Variable in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Array where results of function evaluations are stored
afunc - Variable in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Array where results of function evaluations are stored.
ALF - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
 
allowLMSESolution - Variable in class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Indicates if an LMSE (Least Mean Square Error) solution is allowed if more evaluations than the required minimum are provided.
alph - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
Estimated alpha of variogram.
alpha - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Curvature matrix.
alpha - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Curvature matrix.
alpha - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Curvature matrix.
amotry(Matrix, double[], double[], int, double, MultiDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Internal method to move simplex around.
ans - Variable in class com.irurueta.numerical.interpolation.CurveInterpolator
Result of interpolation.
aOrig - Variable in class com.irurueta.numerical.integration.LowerSquareRootMidPointMatrixQuadrature
Original lower bound of integration.
aOrig - Variable in class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadrature
Original lower bound of integration.
areBracketEvaluationsAvailable() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Returns boolean indicating whether bracket evaluations are available for retrieval.
areDirectionsAvailable() - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Returns boolean indicating whether set of directions is available for retrieval.
areFunctionEvaluationsAvailable() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Returns boolean indicating whether function evaluations at simplex vertices are available for retrieval.
areMinMaxAvailable - Variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
Boolean indicating whether minimum and maximum values in array are already available.
areMinMaxValuesAvailable() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Returns boolean indicating whether minimum and maximum values in array are already available.
arePolynomialParametersAvailable() - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Returns boolean indicating whether REAL polynomial parameters have been provided and is available for retrieval.
arePolynomialParametersAvailable() - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
Returns boolean indicating whether polynomial parameters have been provided and are available for retrieval.
arePolynomialParametersAvailable() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Returns boolean indicating whether REAL polynomial parameters have been provided and is available for retrieval.
arePolynomialParametersAvailable() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Returns boolean indicating whether REAL polynomial parameters have been provided and is available for retrieval.
areRootsAvailable() - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
Returns boolean indicating whether roots have been estimated and are available for retrieval.
areRootsPolished() - Method in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Returns boolean indicating whether roots are refined after an initial estimation.
areWeightsAvailable() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Returns boolean indicating whether weights have been provided and are available for retrieval.
ARTIFACT_ID_KEY - Static variable in class com.irurueta.numerical.BuildInfo
Key to obtain artifactId of this library from properties file.
artifactId - Variable in class com.irurueta.numerical.BuildInfo
ArtifactId of this library.
as - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
Scaled version of provided input matrix.
ax - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Minimum evaluation point inside the bracket.
ax - Variable in class com.irurueta.numerical.PadeApproximantEstimator
Contains product of "a" and "x" matrices to iteratively improve LU solution.

B

b - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
Estimated "b" parameter of line following equation y = a + b*X
b - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Upper limit of integration.
b - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
Upper limit of integration.
b - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Upper limit of integration.
b - Variable in class com.irurueta.numerical.integration.MidPointQuadrature
Upper limit of integration.
b - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Upper limit of integration.
b - Variable in class com.irurueta.numerical.integration.TrapezoidalQuadrature
Upper limit of integration.
BarycentricRationalInterpolator - Class in com.irurueta.numerical.interpolation
Computes barycentric rational interpolation.
BarycentricRationalInterpolator(double[], double[], int) - Constructor for class com.irurueta.numerical.interpolation.BarycentricRationalInterpolator
Constructor.
BaseInterpolator - Class in com.irurueta.numerical.interpolation
Abstract base class used by all interpolation implementations.
BaseInterpolator(double[], double[], int) - Constructor for class com.irurueta.numerical.interpolation.BaseInterpolator
Constructor.
BaseInterpolator(double[], double[], int, boolean) - Constructor for class com.irurueta.numerical.interpolation.BaseInterpolator
Constructor.
BaseRadialBasisFunctionInterpolator - Class in com.irurueta.numerical.interpolation
Base class for interpolation methods based on Radial Basis Functions to interpolate sparse points.
BaseRadialBasisFunctionInterpolator(Matrix) - Constructor for class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
Constructor.
bestInliersData - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Data related to inliers found for best result.
bestInliersData - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Data related to inliers found for best result.
bestInliersData - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Data related to inliers found for best result.
bestInliersData - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Data related to inliers found for best result.
bestMedianResidual - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
Best median of error found so far taking into account all provided samples.
bestMedianResidual - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
Best median of error found so far taking into account all provided samples.
bestMedianResidual - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Best median of error found so far taking into account all provided samples.
bestNumberInliersData - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Data related to solution producing the largest number of inliers.
bestResult - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Best solution that has been found so far during an estimation.
bestResult - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Best solution that has been found so far during an estimation.
bestResult - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Best solution that has been found so far during an estimation.
bestResult - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Best solution that has been found so far during an estimation.
bestResult - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Best solution that has been found so far during an estimation.
bestResultInliersData - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Data related to inliers found for best result.
bet - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
Beta of variogram.
beta - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
beta is the probability that a match is declared inlier by mistake, i.e.
beta - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
beta is the probability that a match is declared inlier by mistake, i.e.
BicubicSpline2DInterpolator - Class in com.irurueta.numerical.interpolation
Computes bicubic spline interpolation in two dimensions.
BicubicSpline2DInterpolator(double[], double[], Matrix) - Constructor for class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
Constructor.
BilinearInterpolator - Class in com.irurueta.numerical.interpolation
Interpolation in two dimensions.
BilinearInterpolator(double[], double[], Matrix) - Constructor for class com.irurueta.numerical.interpolation.BilinearInterpolator
Constructor.
bins - Variable in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Number of samples contained on each bin.
BisectionSingleRootEstimator - Class in com.irurueta.numerical.roots
This class searches for a single REAL root on a single dimension function (i.e.
BisectionSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.BisectionSingleRootEstimator
Empty constructor.
BisectionSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.BisectionSingleRootEstimator
Constructor.
borig - Variable in class com.irurueta.numerical.integration.UpperSquareRootMidPointMatrixQuadrature
Original upper bound of integration.
borig - Variable in class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadrature
Original upper bound of integration.
BRACKET_EPS - Static variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Constant defining the value by which the largest bracket evaluation value is increased respect the minimum.
bracketAvailable - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Boolean indicating whether a bracket has been provided or computed.
bracketAvailable - Variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Boolean indicating whether a bracket has been computed and is available.
BracketedSingleOptimizer - Class in com.irurueta.numerical.optimization
This class searches for brackets of values containing a minimum in a single dimension function.
BracketedSingleOptimizer() - Constructor for class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Empty Constructor.
BracketedSingleOptimizer(double, double, double) - Constructor for class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Constructor.
BracketedSingleOptimizer(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Constructor.
BracketedSingleRootEstimator - Class in com.irurueta.numerical.roots
Computes a root for a single dimension function inside a given bracket of values, in other words, root will only be searched within provided minimum and maximum evaluation points.
BracketedSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Empty constructor.
BracketedSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Constructor.
bracketEvaluationAvailable - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Boolean indicating whether function evaluation at bracket limits and middle point are available or not.
branch - Variable in class com.irurueta.numerical.BuildInfo
Build branch.
BRANCH_KEY - Static variable in class com.irurueta.numerical.BuildInfo
Key to obtain build branch from properties file.
brent - Variable in class com.irurueta.numerical.optimization.LineMultiOptimizer
Internal optimizer to find a minimum of a function along a line of input values.
BrentSingleOptimizer - Class in com.irurueta.numerical.optimization
This class uses Brent algorithm to determine a local function minimum for single dimension functions.
BrentSingleOptimizer() - Constructor for class com.irurueta.numerical.optimization.BrentSingleOptimizer
Empty constructor.
BrentSingleOptimizer(double, double, double, double) - Constructor for class com.irurueta.numerical.optimization.BrentSingleOptimizer
Constructor.
BrentSingleOptimizer(SingleDimensionFunctionEvaluatorListener, double, double, double, double) - Constructor for class com.irurueta.numerical.optimization.BrentSingleOptimizer
Constructor.
BrentSingleRootEstimator - Class in com.irurueta.numerical.roots
This class estimates the root of a single dimension continuous function using Brent's method.
BrentSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.BrentSingleRootEstimator
Empty constructor.
BrentSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.BrentSingleRootEstimator
Constructor.
BUILD_INFO_PROPERTIES - Static variable in class com.irurueta.numerical.BuildInfo
Location of properties file that contains build data.
BUILD_NUMBER_KEY - Static variable in class com.irurueta.numerical.BuildInfo
Key to obtain build number from properties file.
BUILD_TIMESTAMP_KEY - Static variable in class com.irurueta.numerical.BuildInfo
Key to obtain build timestamp from properties file.
buildDirections() - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Internal method to build or rebuild the set of directions if needed.
BuildInfo - Class in com.irurueta.numerical
Contains build data of this library.
BuildInfo() - Constructor for class com.irurueta.numerical.BuildInfo
Constructor.
buildNumber - Variable in class com.irurueta.numerical.BuildInfo
Build number.
buildTimestamp - Variable in class com.irurueta.numerical.BuildInfo
Build timestamp.
bx - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Middle evaluation point inside the bracket.

C

C - Static variable in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
Golden ratio.
cache - Variable in class com.irurueta.numerical.DoubleFactorialEstimator
Cache of values.
cache - Variable in class com.irurueta.numerical.LongFactorialEstimator
Cache of values.
CACHE_SIZE - Static variable in class com.irurueta.numerical.DoubleFactorialEstimator
Cache size for factorial values that can be represented without overflowing with double precision.
CACHE_SIZE - Static variable in class com.irurueta.numerical.LongFactorialEstimator
Cache size for factorial values that can be represented without overflowing with long precision.
cast(QuadratureIntegrator<?>) - Static method in class com.irurueta.numerical.integration.QuadratureIntegrator
Casts integrator to a quadrature integrator without wildcard parameter.
cast(QuadratureMatrixIntegrator<?>) - Static method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Cast integrator to a quadrature integrator without wildcard parameter.
cast(RombergIntegrator<?>) - Static method in class com.irurueta.numerical.integration.RombergIntegrator
Casts integrator to a quadrature integrator without wildcard parameter.
cast(RombergMatrixIntegrator<?>) - Static method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Casts integrator to a quadrature integrator without wildcard parameter.
cast(SimpsonIntegrator<?>) - Static method in class com.irurueta.numerical.integration.SimpsonIntegrator
Casts integrator to a quadrature integrator without wildcard parameter.
cast(SimpsonMatrixIntegrator<?>) - Static method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Casts integrator to a quadrature integrator without wildcard parameter.
CGOLD - Static variable in class com.irurueta.numerical.optimization.BrentSingleOptimizer
Is the golden ratio.
CHI_SQUARED - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Chi squared.
CHI_SQUARED - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Chi squared.
chi2 - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
Estimated chi square value.
chisq - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
Estimated chi square value of input data
chisq - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
Estimated chi square value of input data.
chisq - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
Estimated chi square value of input data.
cls - Variable in class com.irurueta.numerical.interpolation.CurveInterpolator
True indicates a closed curve, false indicates an open one.
columns - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Number of columns of quadrature result.
columns - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Number of columns of quadrature result.
columns - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Number of columns of quadrature result.
com.irurueta.numerical - package com.irurueta.numerical
This library contains packages for:
com.irurueta.numerical.fitting - package com.irurueta.numerical.fitting
 
com.irurueta.numerical.integration - package com.irurueta.numerical.integration
 
com.irurueta.numerical.interpolation - package com.irurueta.numerical.interpolation
 
com.irurueta.numerical.optimization - package com.irurueta.numerical.optimization
 
com.irurueta.numerical.polynomials - package com.irurueta.numerical.polynomials
 
com.irurueta.numerical.polynomials.estimators - package com.irurueta.numerical.polynomials.estimators
 
com.irurueta.numerical.robust - package com.irurueta.numerical.robust
This package contains robust estimators that can be used to discard outliers for cases where a model of the data is known (i.e.
com.irurueta.numerical.roots - package com.irurueta.numerical.roots
This package contains classes to find function roots.
com.irurueta.numerical.signal.processing - package com.irurueta.numerical.signal.processing
 
commit - Variable in class com.irurueta.numerical.BuildInfo
Build commit.
COMMIT_KEY - Static variable in class com.irurueta.numerical.BuildInfo
Key to obtain build commit from properties file.
ComplexPolynomialEvaluator - Class in com.irurueta.numerical
Utility class to evaluate complex polynomials.
ComplexPolynomialEvaluator(Complex[]) - Constructor for class com.irurueta.numerical.ComplexPolynomialEvaluator
Constructor.
computeAndKeepInliers - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Indicates whether inliers must be computed and kept.
computeAndKeepInliers - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Indicates whether inliers must be computed and kept.
computeAndKeepResiduals - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Indicates whether residuals must be computed and kept.
computeAndKeepResiduals - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Indicates whether residuals must be computed and kept.
computeBracket() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Computes a bracket of values using the whole range of possible values as an initial guess.
computeBracket() - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Starting at zero, this method expands the range (i.e.
computeBracket(double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Computes a bracket of values using provided value as a starting point, and assuming that bracket finishes at Double.MAX_VALUE.
computeBracket(double) - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Starting from provided point, this method expands the range (i.e.
computeBracket(double, double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Computes a bracket of values using provided values as a starting point.
computeBracket(double, double) - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Starting from provided minimum and maximum values, this method expands the range (i.e.
computeGaussian(double[], double) - Method in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Internal method to compute values of Gaussian vector assumed to be centered at provided value.
computeInliers(T, double, double[], LMedSRobustEstimatorListener<T>, Sorter<Double>, MSACRobustEstimator.MSACInliersData) - Static method in class com.irurueta.numerical.robust.MSACRobustEstimator
Computes inliers data for current iteration.
computeInliers(T, double, BitSet, int, PROSACRobustEstimatorListener<T>, double[]) - Static method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Computes inliers data for current iteration.
computeInliers(T, int, double, boolean, double, double[], LMedSRobustEstimatorListener<T>, Sorter<Double>, PROMedSRobustEstimator.PROMedSInliersData) - Static method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Computes inliers data for current iteration.
computeInliers(T, int, double, double[], LMedSRobustEstimatorListener<T>, Sorter<Double>, LMedSRobustEstimator.LMedSInliersData) - Static method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Computes inliers data for current iteration.
computeIterations(double, int, double) - Static method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Computes number of required iterations to achieve required confidence with current probability of inlier and sample subset size.
computeIterations(double, int, double) - Static method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Computes number of required iterations to achieve required confidence with current probability of inlier and sample subset size.
computeMinMaxValues() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Internal method to compute minimum and maximum values of provided input data array.
computeRandomSubsets(int) - Method in class com.irurueta.numerical.robust.SubsetSelector
Computes a random subset of indices within range of number of samples to be used on robust estimators.
computeRandomSubsets(int, int[]) - Method in class com.irurueta.numerical.robust.FastRandomSubsetSelector
Computes a random subset of indices within range of number of samples to be used on robust estimators.
computeRandomSubsets(int, int[]) - Method in class com.irurueta.numerical.robust.SubsetSelector
Computes a random subset of indices within range of number of samples to be used on robust estimators.
computeRandomSubsetsInRange(int, int, int, boolean) - Method in class com.irurueta.numerical.robust.SubsetSelector
Computes a random subset of indices within provided range of positions to be used on robust estimators.
computeRandomSubsetsInRange(int, int, int, boolean, int[]) - Method in class com.irurueta.numerical.robust.FastRandomSubsetSelector
Computes a random subset of indices within provided range of positions to be used on robust estimators.
computeRandomSubsetsInRange(int, int, int, boolean, int[]) - Method in class com.irurueta.numerical.robust.SubsetSelector
Computes a random subset of indices within provided range of positions to be used on robust estimators.
computeResidual(T, int) - Method in interface com.irurueta.numerical.robust.LMedSRobustEstimatorListener
Computes residual for sample located at i-th position using estimation on current iteration.
computeSortedQualityIndices(double[]) - Static method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Obtains indices of samples corresponding to samples ordered in descending quality scores.
computeSortedQualityIndices(double[]) - Static method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Obtains indices of samples corresponding to samples ordered in descending quality scores.
confidence - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Amount of confidence expressed as a value between 0.0 and 1.0 (which is equivalent to 100%).
confidence - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
confidence - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
confidence - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
confidence - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
confidence - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
ConjugateGradientMultiOptimizer - Class in com.irurueta.numerical.optimization
This class searches for a multi dimension function local minimum.
ConjugateGradientMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Empty constructor.
ConjugateGradientMultiOptimizer(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double[], double[], double, boolean) - Constructor for class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Constructor.
ConjugateGradientMultiOptimizer(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double[], double, boolean) - Constructor for class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Constructor.
CONSTANT_EDGE - Enum constant in enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
When convolution kernel reaches edge of signal being convoluted, it is assumed that the signal has a constant value (with a value that can be setup).
constants - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Constant terms of integral.
constants - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Constant terms of integral.
constantValue - Variable in class com.irurueta.numerical.signal.processing.Convolver1D
Constant value to use during edge extension when CONSTANT_EDGE method is being used.
controlMatrix - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Control matrix (B) (it is not used if there is no control).
convolve() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel using provided configuration for edge extension.
convolve(double[]) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel using provided configuration for edge extension.
convolve(double[], double[]) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel assuming a zero value extension method and kernel center located at its origin.
convolve(double[], double[], double[]) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel assuming a zero value extension method and kernel center located at its origin.
convolve(double[], double[], double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel assuming a zero value extension method and kernel center located at its origin.
convolve(double[], double[], int) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel assuming a zero value extension method.
convolve(double[], double[], int, double[]) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel assuming a zero value extension method.
convolve(double[], double[], int, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel assuming a zero value extension method.
convolve(double[], double[], int, Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel assuming a zero value extension method.
convolve(double[], double[], int, ConvolverEdgeMethod) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel assuming a zero value when constant edge extension is used (which makes it equivalent to zero extension method).
convolve(double[], double[], int, ConvolverEdgeMethod, double) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel.
convolve(double[], double[], int, ConvolverEdgeMethod, double[]) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel assuming a zero value when constant edge extension is used (which makes it equivalent to zero extension method).
convolve(double[], double[], int, ConvolverEdgeMethod, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel assuming a zero value when constant edge extension is used (which makes it equivalent to zero extension method).
convolve(double[], double[], int, ConvolverEdgeMethod, double, double[]) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel.
convolve(double[], double[], int, ConvolverEdgeMethod, double, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel.
convolve(double[], double[], int, ConvolverEdgeMethod, double, Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel.
convolve(double[], double[], int, ConvolverEdgeMethod, Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel assuming a zero value when constant edge extension is used (which makes it equivalent to zero extension method).
convolve(double[], double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Convolves provided signal with provided kernel assuming a zero value extension method and kernel center located at its origin.
Convolver1D - Class in com.irurueta.numerical.signal.processing
Convolves a 1D signal with a 1D kernel.
Convolver1D() - Constructor for class com.irurueta.numerical.signal.processing.Convolver1D
Constructor.
Convolver1D(double[], double[]) - Constructor for class com.irurueta.numerical.signal.processing.Convolver1D
Constructor.
Convolver1D.Convolver1DListener - Interface in com.irurueta.numerical.signal.processing
Interface defining events produced by this class.
ConvolverEdgeMethod - Enum Class in com.irurueta.numerical.signal.processing
This enumerator indicates how edges should be treated during convolution.
ConvolverEdgeMethod() - Constructor for enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
 
cor - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
 
correct(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Adjusts model state.
covar - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
Covariance of estimated parameters of linear single dimensional function
covar - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
Covariance of estimated parameters of linear single dimensional function.
covar - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
Covariance of estimated parameters of single dimensional function.
covsrt(Matrix) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Expand in storage the covariance matrix covar, to take into account parameters that are being held fixed.
covsrt(Matrix) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Expand in storage the covariance matrix covar, to take into account parameters that are being held fixed.
covsrt(Matrix) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Expand in storage the covariance matrix covar, to take into account parameters that are being held fixed.
cp - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Number of control vector dimensions (control parameters).
create() - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Creates an instance of a subclass of this class using default maximum likelihood estimation method and default Gaussian sigma.
create() - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using default type.
create() - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using default method.
create(double) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Creates an instance of a subclass of this class using default maximum likelihood estimation method and provided Gaussian sigma.
create(double[]) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Creates an instance of a subclass of this class using default maximum likelihood method and Gaussian sigma, and provided input data array
create(double[], double) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Creates an instance of a subclass of this class using default maximum likelihood method, provided Gaussian sigma and input data array
create(double[], double, MaximumLikelihoodEstimatorMethod) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Creates an instance of a subclass of this class based on provided method and using provided Gaussian sigma and input data array.
create(double, double, double[]) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Creates an instance of a subclass of this class using default maximum likelihood method and default Gaussian sigma, and using provided input data array and minimum/maximum values assumed to be contained in provided array.
create(double, double, double[], double) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Creates an instance of a subclass of this class using default maximum likelihood method and using provided Gaussian sigma, input data array and minimum/maximum values assumed to be contained in provided array.
create(double, double, double[], double, MaximumLikelihoodEstimatorMethod) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Creates an instance of a subclass of this class based on provided method and using provided Gaussian sigma, input data array and minimum/maximum values assumed to be contained in provided array.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.MatrixIntegrator
Creates an integrator using default integrator and quadrature types with default accuracy.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Creates a quadrature integrator using default accuracy and quadrature type.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Creates an integrator using Romberg's method and having default accuracy and quadrature type.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Creates an integrator using Simpson's method and having default accuracy and quadrature type.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.MatrixIntegrator
Creates an integrator using default integrator and quadrature types.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Creates a quadrature integrator using default quadrature type.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Creates an integrator using Romberg's method and default quadrature type.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Creates an integrator using Simpson's method and default quadrature type.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double, IntegratorType) - Static method in class com.irurueta.numerical.integration.MatrixIntegrator
Creates an integrator using provided integrator type and using default quadrature type.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double, IntegratorType, QuadratureType) - Static method in class com.irurueta.numerical.integration.MatrixIntegrator
Creates an integrator using provided integrator and quadrature types.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double, QuadratureType) - Static method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Creates a quadrature integrator.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double, QuadratureType) - Static method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Creates an integrator using Romberg's method.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double, QuadratureType) - Static method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Creates an integrator using Simpson's method.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, IntegratorType) - Static method in class com.irurueta.numerical.integration.MatrixIntegrator
Creates an integrator using provided integrator type with default accuracy and using default quadrature type.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, IntegratorType, QuadratureType) - Static method in class com.irurueta.numerical.integration.MatrixIntegrator
Creates an integrator using provided integrator and quadrature types with default accuracy.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, QuadratureType) - Static method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Creates a quadrature integrator with default accuracy.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, QuadratureType) - Static method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Creates an integrator using Romberg's method and having default accuracy.
create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, QuadratureType) - Static method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Creates an integrator using Simpson's method and having default accuracy.
create(double, double, SingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.Integrator
Creates an integrator using default integrator and quadrature types with default accuracy.
create(double, double, SingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.QuadratureIntegrator
Creates a quadrature integrator using default accuracy and quadrature type.
create(double, double, SingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.RombergIntegrator
Creates an integrator using Romberg's method and having default accuracy and quadrature type.
create(double, double, SingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.SimpsonIntegrator
Creates an integrator using Simpson's method and having default accuracy and quadrature type.
create(double, double, SingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.Integrator
Creates an integrator using default integrator and quadrature types.
create(double, double, SingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.QuadratureIntegrator
Creates a quadrature integrator using default quadrature type.
create(double, double, SingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.RombergIntegrator
Creates an integrator using Romberg's method and default quadrature type.
create(double, double, SingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.SimpsonIntegrator
Creates an integrator using Simpson's method and default quadrature type.
create(double, double, SingleDimensionFunctionEvaluatorListener, double, IntegratorType) - Static method in class com.irurueta.numerical.integration.Integrator
Creates an integrator using provided integrator type and using default quadrature type.
create(double, double, SingleDimensionFunctionEvaluatorListener, double, IntegratorType, QuadratureType) - Static method in class com.irurueta.numerical.integration.Integrator
Creates an integrator using provided integrator and quadrature types.
create(double, double, SingleDimensionFunctionEvaluatorListener, double, QuadratureType) - Static method in class com.irurueta.numerical.integration.QuadratureIntegrator
Creates a quadrature integrator.
create(double, double, SingleDimensionFunctionEvaluatorListener, double, QuadratureType) - Static method in class com.irurueta.numerical.integration.RombergIntegrator
Creates an integrator using Romberg's method.
create(double, double, SingleDimensionFunctionEvaluatorListener, double, QuadratureType) - Static method in class com.irurueta.numerical.integration.SimpsonIntegrator
Creates an integrator using Simpson's method.
create(double, double, SingleDimensionFunctionEvaluatorListener, IntegratorType) - Static method in class com.irurueta.numerical.integration.Integrator
Creates an integrator using provided integrator type with default accuracy and using default quadrature type.
create(double, double, SingleDimensionFunctionEvaluatorListener, IntegratorType, QuadratureType) - Static method in class com.irurueta.numerical.integration.Integrator
Creates an integrator using provided integrator and quadrature types with default accuracy.
create(double, double, SingleDimensionFunctionEvaluatorListener, QuadratureType) - Static method in class com.irurueta.numerical.integration.QuadratureIntegrator
Creates a quadrature integrator with default accuracy.
create(double, double, SingleDimensionFunctionEvaluatorListener, QuadratureType) - Static method in class com.irurueta.numerical.integration.RombergIntegrator
Creates an integrator using Romberg's method and having default accuracy.
create(double, double, SingleDimensionFunctionEvaluatorListener, QuadratureType) - Static method in class com.irurueta.numerical.integration.SimpsonIntegrator
Creates an integrator using Simpson's method and having default accuracy.
create(double, MaximumLikelihoodEstimatorMethod) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Creates an instance of a subclass of this class based on provided method and using provided Gaussian sigma.
create(int) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided degree and default type.
create(int) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided degree and default method.
create(int) - Static method in class com.irurueta.numerical.robust.SubsetSelector
Creates a new subset selector instance using provided total number of samples and default subset selector type.
create(int, PolynomialEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided degree, listener and default type.
create(int, PolynomialEstimatorListener, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided degree, listener and type.
create(int, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided degree and type.
create(int, PolynomialRobustEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided degree, listener and default method.
create(int, PolynomialRobustEstimatorListener, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided degree, listener and method.
create(int, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided degree and method.
create(int, List<PolynomialEvaluation>) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided degree, polynomial evaluations and default type.
create(int, List<PolynomialEvaluation>) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided degree, evaluations and default method.
create(int, List<PolynomialEvaluation>, PolynomialEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided degree, evaluations, listener and default type.
create(int, List<PolynomialEvaluation>, PolynomialEstimatorListener, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided degree, evaluations, listener and type.
create(int, List<PolynomialEvaluation>, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided degree, evaluations and type.
create(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided degree, evaluations, listener and default method.
create(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided degree, evaluations, listener and method.
create(int, List<PolynomialEvaluation>, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided degree, evaluations and method.
create(PolynomialEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided listener and default type and degree.
create(PolynomialEstimatorListener, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided listener and type.
create(PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided type and default degree.
create(PolynomialRobustEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided listener and default method.
create(PolynomialRobustEstimatorListener, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided listener and method.
create(RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided method.
create(List<PolynomialEvaluation>) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided evaluations, and default type and degree.
create(List<PolynomialEvaluation>) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided evaluations and default method.
create(List<PolynomialEvaluation>, PolynomialEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided evaluations, listener and default type.
create(List<PolynomialEvaluation>, PolynomialEstimatorListener, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided evaluations, listener and type.
create(List<PolynomialEvaluation>, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Creates an instance of a polynomial estimator using provided evaluations and type.
create(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided evaluations, listener and default method.
create(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided evaluations, listener and method.
create(List<PolynomialEvaluation>, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Creates a robust polynomial estimator using provided evaluations and method.
createCopy() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Creates a copy of inlier data.
createInitialParametersArray() - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFunctionEvaluator
Creates array where estimated parameters will be stored.
createInitialParametersArray() - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFunctionEvaluator
Creates array where estimated parameters will be stored.
createInitialParametersArray() - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFunctionEvaluator
Creates array where estimated parameters will be stored.
createRandomizer(boolean) - Method in class com.irurueta.numerical.robust.FastRandomSubsetSelector
Initializes randomizer for an instance of this class.
createResultArray() - Method in interface com.irurueta.numerical.fitting.LinearFitterMultiDimensionFunctionEvaluator
Creates array where basis function results will be stored
createResultArray() - Method in interface com.irurueta.numerical.fitting.LinearFitterSingleDimensionFunctionEvaluator
Creates array where basis function results will be stored
cubeRoot(double) - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Computes the cube root or x^(1/3) of provided value x
CubicSplineInterpolator - Class in com.irurueta.numerical.interpolation
Computes cubic spline interpolation.
CubicSplineInterpolator(double[], double[]) - Constructor for class com.irurueta.numerical.interpolation.CubicSplineInterpolator
Constructor with x and y vectors and default values for first derivative at the endpoints.
CubicSplineInterpolator(double[], double[], double, double) - Constructor for class com.irurueta.numerical.interpolation.CubicSplineInterpolator
Constructor with x and y vectors, and values of the first derivative at the endpoints.
CurveInterpolator - Class in com.irurueta.numerical.interpolation
Computes curve interpolation of multidimensional points using cubic splines.
CurveInterpolator(Matrix) - Constructor for class com.irurueta.numerical.interpolation.CurveInterpolator
Constructor assuming that curve is NOT closed.
CurveInterpolator(Matrix, boolean) - Constructor for class com.irurueta.numerical.interpolation.CurveInterpolator
Constructor.
cx - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Maximum evaluation point inside the bracket.
cX - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
Internal matrix reused for efficiency while provided input matrices keep the same size.

D

d - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
Denominator of Padé approximant.
d - Variable in class com.irurueta.numerical.interpolation.BarycentricRationalInterpolator
Order of desired approximation.
dbrent - Variable in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Internal optimizer to find a minimum of a function along a line of input values.
DEFAULT_ADJUST_COVARIANCE - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Indicates whether covariance must be adjusted or not after fitting is finished.
DEFAULT_ADJUST_COVARIANCE - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Indicates whether covariance must be adjusted or not after fitting is finished.
DEFAULT_ADJUST_COVARIANCE - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Indicates whether covariance must be adjusted or not after fitting is finished.
DEFAULT_ALLOW_LMSE_SOLUTION - Static variable in class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Indicates if by default an LMSE (Least Mean Square Error) solution is allowed if more evaluations than the required minimum are provided.
DEFAULT_BETA - Static variable in class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
Default Beta value to be used.
DEFAULT_BETA - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Defines the default value for beta, which is the probability that a match is declared inlier by mistake, i.e.
DEFAULT_BETA - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Defines the default value for beta, which is the probability that a match is declared inlier by mistake, i.e.
DEFAULT_COMPUTE_AND_KEEP_INLIERS - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Indicates that by default inliers will only be computed but not kept.
DEFAULT_COMPUTE_AND_KEEP_INLIERS - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Indicates that by default inliers will only be computed but not kept.
DEFAULT_COMPUTE_AND_KEEP_RESIDUALS - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Indicates that by default residuals will only be computed but not kept.
DEFAULT_COMPUTE_AND_KEEP_RESIDUALS - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Indicates that by default residuals will only be computed but not kept.
DEFAULT_CONFIDENCE - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Constant defining default confidence of the estimated result, which is 99%.
DEFAULT_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Constant defining default confidence of the estimated result, which is 99%.
DEFAULT_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Constant defining default confidence of estimated result, which is 99%.
DEFAULT_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Constant defining default confidence of the estimated result, which is 99%.
DEFAULT_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Constant defining default confidence of the estimated result, which is 99%.
DEFAULT_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Constant defining default confidence of the estimated result, which is 99%.
DEFAULT_CONSTANT_VALUE - Static variable in class com.irurueta.numerical.signal.processing.Convolver1D
Default constant value to use during convolution if CONSTANT_EDGE method is being used for signal's edge extension.
DEFAULT_EDGE_METHOD - Static variable in class com.irurueta.numerical.signal.processing.Convolver1D
Default method to use for signal's edge extension.
DEFAULT_ESTIMATOR_TYPE - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Default estimator type.
DEFAULT_ETA0 - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Defines the default value for the maximum probability that a solution with more than inliersNStar in U_nStar exist and was not found after k samples.
DEFAULT_ETA0 - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Defines the default value for the maximum probability that a solution with more than inliersNStar in U_nStar exist and was not found after k samples.
DEFAULT_GAUSSIAN_SIGMA - Static variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
Default Gaussian sigma assigned to each sample.
DEFAULT_HMAX - Static variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Default transformation of range of integration.
DEFAULT_HMAX - Static variable in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
Default transformation of range of integration.
DEFAULT_IMPROVEMENT_TIMES - Static variable in class com.irurueta.numerical.PadeApproximantEstimator
Number of times to iteratively improve LU decomposition solution by default.
DEFAULT_INLIER_FACTOR - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Default factor to normalize threshold to determine inliers.
DEFAULT_INLIER_FACTOR - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Default factor to normalize threshold to determine inliers.
DEFAULT_INTEGRATOR_TYPE - Static variable in class com.irurueta.numerical.integration.Integrator
Default integrator type.
DEFAULT_INTEGRATOR_TYPE - Static variable in class com.irurueta.numerical.integration.MatrixIntegrator
Default integrator type.
DEFAULT_ITMAX - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Default maximum number of iterations.
DEFAULT_ITMAX - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Default maximum number of iterations.
DEFAULT_ITMAX - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Default maximum number of iterations.
DEFAULT_KERNEL_CENTER - Static variable in class com.irurueta.numerical.signal.processing.Convolver1D
Default position of kernel center.
DEFAULT_MAX_EVAL_POINT - Static variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Default maximum evaluation point where the bracket is supposed to start By default, if no bracket is computed, the whole range of values is used for minimum estimation.
DEFAULT_MAX_EVAL_POINT - Static variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Default maximum evaluation point.
DEFAULT_MAX_EVALUATIONS - Static variable in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Default number of evaluations to be weighted and taken into account.
DEFAULT_MAX_ITERATIONS - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Default maximum allowed number of iterations.
DEFAULT_MAX_ITERATIONS - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Default maximum allowed number of iterations.
DEFAULT_MAX_ITERATIONS - Static variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Default maximum allowed number of iterations.
DEFAULT_MAX_ITERATIONS - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Default maximum allowed number of iterations.
DEFAULT_MAX_ITERATIONS - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Default maximum allowed number of iterations.
DEFAULT_MAX_ITERATIONS - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Default maximum allowed number of iterations.
DEFAULT_MAX_OUTLIERS_PROPORTION - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Default maximum allowed outliers proportion in the input data.
DEFAULT_MAX_OUTLIERS_PROPORTION - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Default maximum allowed outliers proportion in the input data.
DEFAULT_MEASUREMENT_NOISE_VARIANCE - Static variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Independent measurement noise variance assumed when no measurement noise covariance matrix is provided.
DEFAULT_METHOD - Static variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
Default method to find the most likely value.
DEFAULT_MIDDLE_EVAL_POINT - Static variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Default middle evaluation point where the bracket is supposed to start By default, if no bracket is computed, the whole range of values is used for minimum estimation.
DEFAULT_MIN_EVAL_POINT - Static variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Default minimum evaluation point where the bracket is supposed to start By default, if no bracket is computed, the whole range of values is used for minimum estimation.
DEFAULT_MIN_EVAL_POINT - Static variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Default minimum evaluation point.
DEFAULT_NDONE - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Default convergence parameter.
DEFAULT_NDONE - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Default convergence parameter.
DEFAULT_NDONE - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Default convergence parameter.
DEFAULT_NUG - Static variable in class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
Default offset to use.
DEFAULT_NUMBER_OF_BINS - Static variable in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Default number of bins to be used on the histogram.
DEFAULT_POLISH_ROOTS - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Constant indicating whether roots will be refined.
DEFAULT_PROCESS_NOISE_VARIANCE - Static variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Independent process noise variance assumed when no process noise covariance matrix is provided.
DEFAULT_PROGRESS_DELTA - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Default amount of progress variation before notifying a change in estimation progress.
DEFAULT_PROGRESS_DELTA - Static variable in class com.irurueta.numerical.robust.RobustEstimator
Default amount of progress variation before notifying a change in estimation progress.
DEFAULT_QUADRATURE_TYPE - Static variable in class com.irurueta.numerical.integration.Integrator
Default quadrature type.
DEFAULT_QUADRATURE_TYPE - Static variable in class com.irurueta.numerical.integration.MatrixIntegrator
Default quadrature type.
DEFAULT_ROBUST_METHOD - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Default robust estimator method when none is provided.
DEFAULT_SEED_RANDOMIZER_WITH_TIME - Static variable in class com.irurueta.numerical.robust.FastRandomSubsetSelector
Constant defining whether randomizer needs to be initialized with system timer.
DEFAULT_SORT_WEIGHTS - Static variable in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Indicates if weights are sorted by default so that largest weighted evaluations are used first.
DEFAULT_STOP_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Default value to be used for stop threshold.
DEFAULT_STOP_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Default value to be used for stop threshold.
DEFAULT_STOP_THRESHOLD - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Default value to be used for stop threshold.
DEFAULT_STOP_THRESHOLD_ENABLED - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Indicates whether the algorithm must stop prematurely when dynamically computed threshold using median of residuals has a value lower than provided threshold in listener.
DEFAULT_SUBSET_SELECTOR_TYPE - Static variable in class com.irurueta.numerical.robust.SubsetSelector
Defines default subset selector type.
DEFAULT_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Constant defining default threshold to determine whether polynomials are inliers or not.
DEFAULT_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Constant defining default threshold to determine whether polynomials are inliers or not.
DEFAULT_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Constant defining default threshold to determine whether polynomials are inliers or not.
DEFAULT_TOL - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Default tolerance to reach convergence.
DEFAULT_TOL - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Default tolerance to reach convergence.
DEFAULT_TOL - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Default tolerance to reach convergence.
DEFAULT_TOL - Static variable in class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
Default tolerance.
DEFAULT_TOL - Static variable in class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
Default tolerance.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.BrentSingleOptimizer
Constant defining the default accuracy of the estimated minimum.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Constant defining default tolerance or accuracy to be achieved on the minimum being estimated by this class.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Default tolerance.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Constant defining default tolerance or accuracy to be achieved on the minimum being estimated by this class.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
Constant defining the default accuracy of the estimated minimum.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Constant defining default tolerance or accuracy to be achieved on the minimum being estimated by this class.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Constant defining default tolerance or accuracy to be achieved on the minimum being estimated by this class.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Constant defining default tolerance or accuracy to be achieved on the minimum being estimated by this class.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
Constant defining default tolerance to find a root.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.BrentSingleRootEstimator
Constant defining default accuracy of the estimated root.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
Constant defining default tolerance to find a root.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
Constant defining default accuracy of the estimated root.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.RidderSingleRootEstimator
Constant defining default accuracy of the estimated root.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
Constant defining default accuracy of the estimated root.
DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.SecantSingleRootEstimator
Constant defining default accuracy of the estimated root.
DEFAULT_USE_GEOMETRIC_DISTANCE - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Flag indicating whether geometric distance is used by default or not to find outliers.
DEFAULT_USE_HISTOGRAM_INITIAL_SOLUTION - Static variable in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Boolean indicating if an initial solution should be obtained first by using the Histogram method.
DEFAULT_USE_INLIER_THRESHOLD - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Indicates whether the inlier threshold will be used to find inliers along with their median of residuals.
DEFAULT_USE_POLAK_RIBIERE - Static variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Defines whether Polak-Ribiere is used if true, otherwise Fletcher-Reeves will be used.
DEFAULT_USE_POLAK_RIBIERE - Static variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Defines whether Polak-Ribiere is used if true, otherwise Fletcher-Reeves will be used.
degree - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Degree of polynomial to be estimated.
denominators - Variable in class com.irurueta.numerical.PadeApproximantEstimator.Result
Denominator coefficients.
derivative() - Method in class com.irurueta.numerical.polynomials.Polynomial
Replaces this instance by its derivative.
derivative(double) - Method in class com.irurueta.numerical.DerivativeEstimator
Computes the function derivative at provided point x.
derivative(double) - Method in class com.irurueta.numerical.SavitzkyGolayDerivativeEstimator
Computes the function derivative at provided point x.
derivative(double) - Method in class com.irurueta.numerical.SymmetricDerivativeEstimator
Computes the function derivative at provided point x.
derivative(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes derivative of polynomial.
DERIVATIVE_EVALUATION - Enum constant in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
Evaluation of the nth-derivative of a polynomial.
derivativeAndReturnNew() - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes derivative of polynomial.
DerivativeBrentSingleOptimizer - Class in com.irurueta.numerical.optimization
Class to compute local minimum on single dimension functions using a modification of Brent's algorithm that takes into account the function's derivative.
DerivativeBrentSingleOptimizer() - Constructor for class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Empty constructor.
DerivativeBrentSingleOptimizer(SingleDimensionFunctionEvaluatorListener, SingleDimensionFunctionEvaluatorListener, double, double, double, double) - Constructor for class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Constructor.
DerivativeConjugateGradientMultiOptimizer - Class in com.irurueta.numerical.optimization
This class searches for a multi dimension function local minimum.
DerivativeConjugateGradientMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Empty constructor.
DerivativeConjugateGradientMultiOptimizer(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double[], double[], double, boolean) - Constructor for class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Constructor.
DerivativeEstimator - Class in com.irurueta.numerical
Class to estimate the derivative of a single dimension function at a given point.
DerivativeEstimator(SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.DerivativeEstimator
Constructor
DerivativeLineMultiOptimizer - Class in com.irurueta.numerical.optimization
Class to find a minimum on a multidimensional function along a given line of input values.
DerivativeLineMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Empty constructor.
DerivativeLineMultiOptimizer(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double[], double[]) - Constructor for class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Constructor.
derivativeListener - Variable in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Listener to evaluate the functions derivative.
derivativeListener - Variable in class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
Listener to evaluate a function's derivative.
derivativeOrder - Variable in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
Order of derivative.
DerivativePolynomialEvaluation - Class in com.irurueta.numerical.polynomials.estimators
Contains an evaluation of the derivative of a given order of a polynomial and the point where such derivative has been evaluated.
DerivativePolynomialEvaluation() - Constructor for class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
Constructor.
DerivativePolynomialEvaluation(double, double) - Constructor for class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
 
DerivativePolynomialEvaluation(double, double, int) - Constructor for class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
Constructor.
DerivativeSingleRootEstimator - Class in com.irurueta.numerical.roots
Abstract class to find function roots of a single dimension function using also its derivative information.
DerivativeSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
Empty constructor.
DerivativeSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
Constructor.
DerivativeSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, SingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
Constructor
dft - Variable in class com.irurueta.numerical.DirectionalDerivativeEvaluator
Array containing gradient at point p.
differentiateAt(double) - Method in class com.irurueta.numerical.DirectionalDerivativeEvaluator
Computes derivative on current direction of a function at distance x from current point and using current listener and gradient listener.
dim - Variable in class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
Dimension of points to be interpolated.
dim - Variable in class com.irurueta.numerical.interpolation.CurveInterpolator
Number of points dimensions.
DIRECT_EVALUATION - Enum constant in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
A direct evaluation of a polynomial.
direction - Variable in class com.irurueta.numerical.DirectionalEvaluator
Vector indicating the direction of the line where the function is evaluated.
DirectionalDerivativeEvaluator - Class in com.irurueta.numerical
This class evaluates a multidimensional function and obtains its gradient along a line; such line is defined by an input point and a given direction.
DirectionalDerivativeEvaluator(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double[], double[]) - Constructor for class com.irurueta.numerical.DirectionalDerivativeEvaluator
Constructor.
DirectionalEvaluator - Class in com.irurueta.numerical
This class evaluates a multidimensional function along a line, such line is defined by an input point and a given direction.
DirectionalEvaluator(MultiDimensionFunctionEvaluatorListener, double[], double[]) - Constructor for class com.irurueta.numerical.DirectionalEvaluator
Constructor.
DirectPolynomialEvaluation - Class in com.irurueta.numerical.polynomials.estimators
Contains an evaluation of a polynomial and the point where the polynomial has been evaluated.
DirectPolynomialEvaluation() - Constructor for class com.irurueta.numerical.polynomials.estimators.DirectPolynomialEvaluation
Constructor.
DirectPolynomialEvaluation(double, double) - Constructor for class com.irurueta.numerical.polynomials.estimators.DirectPolynomialEvaluation
Constructor.
dj - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
 
DOUBLE_EXPONENTIAL_RULE - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
Double exponential rule.
DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener - Interface in com.irurueta.numerical.integration
Interface to define how matrix (multivariate) single dimension functions can be evaluated in Double Exponential Rule Quadrature function integrators.
DoubleExponentialRuleMatrixQuadrature - Class in com.irurueta.numerical.integration
Implementation of quadrature using double exponential, which allows integration with a variable transformation.
DoubleExponentialRuleMatrixQuadrature(DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Constructor.
DoubleExponentialRuleMatrixQuadrature(DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Constructor.
DoubleExponentialRuleMatrixQuadrature(MatrixSingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Constructor.
DoubleExponentialRuleMatrixQuadrature(MatrixSingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Constructor.
DoubleExponentialRuleQuadrature - Class in com.irurueta.numerical.integration
Implementation of quadrature using double exponential, which allows integration with a variable transformation.
DoubleExponentialRuleQuadrature(DoubleExponentialSingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
Constructor with default maximum step size.
DoubleExponentialRuleQuadrature(DoubleExponentialSingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
Constructor.
DoubleExponentialRuleQuadrature(SingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
Constructor with default maximum step size.
DoubleExponentialRuleQuadrature(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
Constructor.
DoubleExponentialRuleQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using double exponential quadrature.
DoubleExponentialRuleQuadratureIntegrator(double, double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
Constructor with default accuracy.
DoubleExponentialRuleQuadratureIntegrator(double, double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
Constructor.
DoubleExponentialRuleQuadratureIntegrator(double, double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
Constructor with default accuracy.
DoubleExponentialRuleQuadratureIntegrator(double, double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
Constructor.
DoubleExponentialRuleQuadratureIntegrator(double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
Constructor with default accuracy and default maximum step size.
DoubleExponentialRuleQuadratureIntegrator(double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
Constructor with default maximum step size.
DoubleExponentialRuleQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
Constructor with default accuracy and default maximum step size.
DoubleExponentialRuleQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
Constructor.
DoubleExponentialRuleQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes matrix function integration by using double exponential quadrature.
DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default accuracy.
DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
Constructor.
DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default accuracy.
DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
Constructor.
DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default accuracy and default maximum step size.
DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default maximum step size.
DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default accuracy and default maximum step size.
DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
Constructor.
DoubleExponentialSingleDimensionFunctionEvaluatorListener - Interface in com.irurueta.numerical.integration
Interface to define how single dimension functions can be evaluated in Double Exponential Rule Quadrature function integrators.
DoubleFactorialEstimator - Class in com.irurueta.numerical
Estimates factorial values as double precision floating point values.
DoubleFactorialEstimator() - Constructor for class com.irurueta.numerical.DoubleFactorialEstimator
Constructor with default cache size.
DoubleFactorialEstimator(int) - Constructor for class com.irurueta.numerical.DoubleFactorialEstimator
Constructor.
dp - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Number of state vector dimensions (dynamic parameters).
dstar - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
 
dy - Variable in class com.irurueta.numerical.interpolation.PolynomialInterpolator
An indication of interpolation error on the y values of the last call to BaseInterpolator.interpolate(double).
dy - Variable in class com.irurueta.numerical.interpolation.RationalInterpolator
An indication of interpolation error on the y values of the last call to BaseInterpolator.interpolate(double).

E

edgeMethod - Variable in class com.irurueta.numerical.signal.processing.Convolver1D
Edge extension method to use during convolution when parts of the kernel are required to lie outside the signal's boundaries.
endX - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
End point of interval being integrated.
eps - Variable in class com.irurueta.numerical.integration.QuadratureIntegrator
Required accuracy.
eps - Variable in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Required accuracy.
eps - Variable in class com.irurueta.numerical.integration.RombergIntegrator
Required accuracy.
eps - Variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Required accuracy.
eps - Variable in class com.irurueta.numerical.integration.SimpsonIntegrator
Required accuracy.
eps - Variable in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Required accuracy.
EPS - Static variable in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Value to be considered as the machine precision.
EPS - Static variable in class com.irurueta.numerical.DerivativeEstimator
Constant defining machine precision for this algorithm.
EPS - Static variable in class com.irurueta.numerical.GradientEstimator
Constant considered as machine precision.
EPS - Static variable in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Value to be considered as the machine precision.
EPS - Static variable in class com.irurueta.numerical.integration.QuadratureIntegrator
Default accuracy.
EPS - Static variable in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Default accuracy.
EPS - Static variable in class com.irurueta.numerical.integration.RombergIntegrator
Default accuracy.
EPS - Static variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Default accuracy.
EPS - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
Default accuracy.
EPS - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
Default accuracy.
EPS - Static variable in class com.irurueta.numerical.integration.SimpsonIntegrator
Default accuracy.
EPS - Static variable in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Default accuracy.
EPS - Static variable in class com.irurueta.numerical.JacobianEstimator
Constant considered as machine precision.
EPS - Static variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Constant defining a value to be considered as machine precision.
EPS - Static variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Constant defining a value to be considered as machine precision.
EPS - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Machine precision.
EPS - Static variable in class com.irurueta.numerical.polynomials.Polynomial
Constant defining machine precision
EPS - Static variable in class com.irurueta.numerical.roots.BrentSingleRootEstimator
Constant defining a small value which is considered as machine precision.
EPS - Static variable in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Constant defining machine precision.
EPS - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Constant considered as machine precision.
EPS - Static variable in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Constant defining machine precision.
EPS - Static variable in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Constant defining machine precision.
errorCovPost - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
errorCovPre - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)
estimate() - Method in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Starts the estimation of the most likely value contained within provided input data array.
estimate() - Method in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Starts the estimation of the most likely value contained within provided input data array.
estimate() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Starts the estimation of the most likely value contained within provided input data array.
estimate() - Method in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Estimates polynomial.
estimate() - Method in class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Estimates a polynomial based on provided evaluations.
estimate() - Method in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Estimates polynomial.
estimate() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Estimates a polynomial based on provided evaluations.
estimate() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Estimates polynomial.
estimate() - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Estimates polynomial.
estimate() - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Estimates polynomial.
estimate() - Method in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Estimates polynomial.
estimate() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Estimates a polynomial based on provided evaluations.
estimate() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Robustly estimates an instance of T.
estimate() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
Robustly estimates an instance of T.
estimate() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Robustly estimates an instance of T.
estimate() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Robustly estimates an instance of T.
estimate() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Robustly estimates an instance of T.
estimate() - Method in class com.irurueta.numerical.robust.RobustEstimator
Robustly estimates an instance of T.
estimate() - Method in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
Estimates a single root of the provided single dimension function contained within a given bracket of values.
estimate() - Method in class com.irurueta.numerical.roots.BrentSingleRootEstimator
Estimates a local root for a given single dimension function being evaluated by provided listener.
estimate() - Method in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
Estimates a single root of the provided single dimension function contained within a given bracket of values.
estimate() - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Estimates the root of provided polynomial.
estimate() - Method in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Estimates the roots of provided polynomial.
estimate() - Method in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
Estimates a local root for a given single dimension function being evaluated by provided listener.
estimate() - Method in class com.irurueta.numerical.roots.RidderSingleRootEstimator
Estimates a local root for a given single dimension function being evaluated by provided listener.
estimate() - Method in class com.irurueta.numerical.roots.RootEstimator
Estimates the root or roots for a given function.
estimate() - Method in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
Estimates a local root for a given single dimension function being evaluated by provided listener.
estimate() - Method in class com.irurueta.numerical.roots.SecantSingleRootEstimator
Estimates a local root for a given single dimension function being evaluated by provided listener.
estimate() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Estimates the roots of provided polynomial.
estimate() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Estimates the roots of provided polynomial.
estimate(double[], double[]) - Method in class com.irurueta.numerical.interpolation.InterpolatingPolynomialEstimator
Estimates polynomial from provided x and y points.
estimate(double[], double[], double[]) - Method in class com.irurueta.numerical.interpolation.AccurateInterpolatingPolynomialEstimator
Estimates polynomial coefficients from provided x and y points.
estimate(double[], double[], double[]) - Method in class com.irurueta.numerical.interpolation.InterpolatingPolynomialEstimator
Estimates polynomial coefficients from provided x and y points.
estimate(double[], double[], double[]) - Method in class com.irurueta.numerical.interpolation.SimpleInterpolatingPolynomialEstimator
Estimates polynomial coefficients from provided x and y points.
estimate(double[], double[], Polynomial) - Method in class com.irurueta.numerical.interpolation.InterpolatingPolynomialEstimator
Estimates polynomial from provided x and y points.
estimateCoefficients(double[], double[]) - Method in class com.irurueta.numerical.interpolation.InterpolatingPolynomialEstimator
Estimates polynomial coefficients from provided x and y points.
estimatedThreshold - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
Estimated threshold to determine whether samples are inliers or not.
estimatedThreshold - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Estimated threshold to determine whether samples are inliers or not.
estimatePadeCoefficients(double[]) - Method in class com.irurueta.numerical.PadeApproximantEstimator
Estimates Padé coefficients for provided Taylor power series ones.
estimatePadeCoefficients(double[], double[], double[]) - Method in class com.irurueta.numerical.PadeApproximantEstimator
Estimates Padé coefficients for provided Taylor power series ones.
estimatePadeCoefficients(double[], int, double[], double[]) - Method in class com.irurueta.numerical.PadeApproximantEstimator
Estimates Padé coefficients for provided Taylor power series ones.
estimatePreliminarSolutions(int[], List<T>) - Method in interface com.irurueta.numerical.robust.LMedSRobustEstimatorListener
Estimates a list of possible preliminary solutions to be used during an iteration of LMedS robust estimator.
eta0 - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
eta0 is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
eta0 - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
eta0 is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
evaluate(double) - Method in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator.EvaluatorListener
Evaluates the aggregation of Gaussians for all the samples in input data array, by assuming that each sample has an associated small Gaussian centered at the sample value and with a small sigma value.
evaluate(double) - Method in class com.irurueta.numerical.interpolation.GaussianRadialBasisFunction
Evaluates RBF at provided distance between two points.
evaluate(double) - Method in class com.irurueta.numerical.interpolation.InverseMultiQuadricRadialBasisFunction
Evaluates RBF at provided distance between two points.
evaluate(double) - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
Evaluates variogram at provided distance.
evaluate(double) - Method in class com.irurueta.numerical.interpolation.MultiQuadricRadialBasisFunction
Evaluates RBF at provided distance between two points.
evaluate(double) - Method in interface com.irurueta.numerical.interpolation.RadialBasisFunction
Evaluates RBF at provided distance between two points.
evaluate(double) - Method in class com.irurueta.numerical.interpolation.ThinPlateRadialBasisFunction
Evaluates RBF at provided distance between two points.
evaluate(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
Evaluates polynomial at provided value.
evaluate(double) - Method in class com.irurueta.numerical.RealPolynomialEvaluator
Evaluates polynomial at provided point x.
evaluate(double) - Method in interface com.irurueta.numerical.SingleDimensionFunctionEvaluatorListener
Evaluates a single dimension function such as f(x) at provided point and returns the result.
evaluate(double[]) - Method in interface com.irurueta.numerical.MultiDimensionFunctionEvaluatorListener
Evaluates a multi dimension function such as f([x1, x2, ..., xn]) at provided multidimensional point and returns the result as a scalar value.
evaluate(double[], double) - Static method in class com.irurueta.numerical.PolynomialEvaluator
Evaluates polynomial formed by provided polynomial parameters at provided point x.
evaluate(double[], double[]) - Method in interface com.irurueta.numerical.fitting.LinearFitterMultiDimensionFunctionEvaluator
Evaluates a linear multi dimension function at provided point and returns the evaluations of the basis functions at such point
evaluate(double[], double[]) - Method in interface com.irurueta.numerical.MultiVariateFunctionEvaluatorListener
Evaluates a multi variate function such as f1(x1, x2, ...), f2(x1, x2, ...) at provided multidimensional point and returns the result as a vectorial value
evaluate(double, double) - Method in interface com.irurueta.numerical.integration.DoubleExponentialSingleDimensionFunctionEvaluatorListener
Evaluates a single dimension function such as f(x) at provided point and returns the result.
evaluate(double, double[]) - Method in interface com.irurueta.numerical.fitting.LinearFitterSingleDimensionFunctionEvaluator
Evaluates a linear single dimension function at provided point and returns the evaluations of the basis functions at such point
evaluate(double, double, Matrix) - Method in interface com.irurueta.numerical.integration.DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener
Evaluates a single dimension function such as f(x) at provided point and returns the result.
evaluate(double, Matrix) - Method in interface com.irurueta.numerical.integration.MatrixSingleDimensionFunctionEvaluatorListener
Evaluates a matrix function such as f(x1) at provided point and returns the result as a matrix.
evaluate(int, double[], double[], double[]) - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFunctionEvaluator
Evaluates a non-linear multi dimension function at provided point using provided parameters and returns its evaluation and derivatives of the function respect the function parameters.
evaluate(int, double[], double[], double[], Matrix) - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFunctionEvaluator
Evaluates a non-linear multi variate function at provided point using provided parameters and returns its evaluation and jacobian of the function respect the function parameters
evaluate(int, double, double[], double[]) - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFunctionEvaluator
Evaluates a non-linear single dimension function at provided point using provided parameters and returns its evaluation and derivatives of the function respect the function parameters
evaluate(Complex) - Method in class com.irurueta.numerical.ComplexPolynomialEvaluator
Evaluates polynomial at provided point x.
evaluate(Complex[], Complex) - Static method in class com.irurueta.numerical.PolynomialEvaluator
Evaluates polynomial formed by provided polynomial parameters at provided point x.
evaluateAt(double) - Method in class com.irurueta.numerical.DirectionalEvaluator
Evaluates a function using current listener at a distance x from current point using current direction
evaluateBracket() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Computes function evaluations at provided or estimated bracket locations.
evaluateDerivative(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
Evaluates derivative of polynomial at provided value.
evaluateGradient(double[], double[]) - Method in interface com.irurueta.numerical.GradientFunctionEvaluatorListener
Computes/retrieves a multidimensional function's gradient.
evaluateNthDerivative(double, int) - Method in class com.irurueta.numerical.polynomials.Polynomial
Evaluates nth-derivative of polynomial at provided value.
evaluateSecondDerivative(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
Evaluates second derivative of polynomial at provided value.
evaluation - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
Evaluation of polynomial at point x.
EvaluationException - Exception in com.irurueta.numerical
Exception raised when function evaluation fails.
EvaluationException() - Constructor for exception com.irurueta.numerical.EvaluationException
Constructor.
EvaluationException(String) - Constructor for exception com.irurueta.numerical.EvaluationException
Constructor with String containing message.
EvaluationException(String, Throwable) - Constructor for exception com.irurueta.numerical.EvaluationException
Constructor with message and cause.
EvaluationException(Throwable) - Constructor for exception com.irurueta.numerical.EvaluationException
Constructor with cause.
evaluations - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
evaluations - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
evaluator - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Evaluator of functions.
evaluator - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Evaluator of functions.
evaluator - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Evaluator of functions.
evaluator - Variable in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Evaluator of functions
evaluator - Variable in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Evaluator of functions.
evaluator - Variable in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Class in charge of evaluating a function through a given line.
evaluator - Variable in class com.irurueta.numerical.optimization.LineMultiOptimizer
Class in charge of evaluating a function through a given line.
EvaluatorListener() - Constructor for class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator.EvaluatorListener
 
exponential(Matrix) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
Estimates exponential of provided matrix with default error tolerance.
exponential(Matrix, double) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
Estimates exponential of provided matrix.
exponential(Matrix, Matrix) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
Estimates exponential of provided matrix with default error tolerance.
exponential(Matrix, Matrix, double) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
Estimates exponential of provided matrix.
EXPONENTIAL_MID_POINT - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
Exponential mid-point quadrature.
ExponentialMatrixEstimator - Class in com.irurueta.numerical
Estimates exponential of a square matrix.
ExponentialMatrixEstimator() - Constructor for class com.irurueta.numerical.ExponentialMatrixEstimator
 
ExponentialMidPointMatrixQuadrature - Class in com.irurueta.numerical.integration
This is an exact replacement for MidPointMatrixQuadrature, except that upper limit is assumed to be infinite.
ExponentialMidPointMatrixQuadrature(double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.ExponentialMidPointMatrixQuadrature
Constructor.
ExponentialMidPointQuadrature - Class in com.irurueta.numerical.integration
This is an exact replacement for MidPointQuadrature, except that upper limit is assumed to be infinite.
ExponentialMidPointQuadrature(double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.ExponentialMidPointQuadrature
Constructor.

F

f - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
Contains copy of estimated result.
fa - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Function evaluation value at minimum evaluation point inside the bracket.
FACTOR - Static variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Factor to use to modify initial values when searching for a bracket.
factorial(int) - Method in class com.irurueta.numerical.DoubleFactorialEstimator
Gets factorial of provided value represented with double precision.
factorial(int) - Method in class com.irurueta.numerical.LongFactorialEstimator
Gets factorial of provided value represented with double precision.
factorialEstimator - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
Estimates factorial values.
FalsePositionSingleRootEstimator - Class in com.irurueta.numerical.roots
Computes a root for a single dimension function inside a given bracket of values, in other words, root will only be searched within provided minimum and maximum evaluation points.
FalsePositionSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
Empty constructor.
FalsePositionSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
Constructor.
FAST_RANDOM_SUBSET_SELECTOR - Enum constant in enum class com.irurueta.numerical.robust.SubsetSelectorType
 
FastRandomSubsetSelector - Class in com.irurueta.numerical.robust
This class computes indices of subsets of samples using a uniform randomizer to pick random samples as fast as possible.
FastRandomSubsetSelector(int) - Constructor for class com.irurueta.numerical.robust.FastRandomSubsetSelector
Constructor.
FastRandomSubsetSelector(int, boolean) - Constructor for class com.irurueta.numerical.robust.FastRandomSubsetSelector
Constructor.
fb - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Function evaluation value at middle evaluation point inside the bracket.
fc - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Function evaluation value at maximum evaluation point inside the bracket.
fillDerivativeEvaluation(DerivativePolynomialEvaluation, Matrix, Matrix, int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Fills row of system of equations for a derivative polynomial evaluation.
fillDirectEvaluation(DirectPolynomialEvaluation, Matrix, Matrix, int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Fills row of system of equations for a direct polynomial evaluation.
fillIntegralEvaluation(IntegralPolynomialEvaluation, Matrix, Matrix, int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Fills row of system of equations for an integral polynomial evaluation.
fillIntegralIntervalEvaluation(IntegralIntervalPolynomialEvaluation, Matrix, Matrix, int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Fills row of system of equations for a polynomial evaluation of an interval integration.
findQForRelativeError(double) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
Finds required order of Padé approximant for provided maximum allowed relative error to be achieved.
findQForTolerance(double, double) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
Finds required order of Padé approximant for provided absolute error tolerance to be achieved.
FirstDegreePolynomialRootsEstimator - Class in com.irurueta.numerical.roots
Class to estimate the root of a first degree polynomial along with other polynomial properties.
FirstDegreePolynomialRootsEstimator() - Constructor for class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Empty constructor.
FirstDegreePolynomialRootsEstimator(double[]) - Constructor for class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Constructor.
fit() - Method in class com.irurueta.numerical.fitting.Fitter
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value
fit() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
fit() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
fit() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
fit() - Method in class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
fit() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Fits a straight line following equation y = a + b*x to provided data (x, y) so that parameters associated a, b can be estimated along with their variances, covariance and chi square value.
fit() - Method in class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
fit() - Method in class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
Fitter - Class in com.irurueta.numerical.fitting
Base class for function fitters used to estimate function parameters along with their covariance matrix and chi square value
Fitter() - Constructor for class com.irurueta.numerical.fitting.Fitter
 
FittingException - Exception in com.irurueta.numerical.fitting
Raised when a fitter fails to fit a function to provided data.
FittingException() - Constructor for exception com.irurueta.numerical.fitting.FittingException
Constructor
FittingException(String) - Constructor for exception com.irurueta.numerical.fitting.FittingException
Constructor with String containing message
FittingException(String, Throwable) - Constructor for exception com.irurueta.numerical.fitting.FittingException
Constructor with message and cause
FittingException(Throwable) - Constructor for exception com.irurueta.numerical.fitting.FittingException
Constructor with cause
fitWithoutSig() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Fits data when standard deviations of input data is not provided.
fitWithSig() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Fits data when standard deviations of input data is provided.
fmin - Variable in class com.irurueta.numerical.optimization.MultiOptimizer
Function value at estimated minimum.
fmin - Variable in class com.irurueta.numerical.optimization.SingleOptimizer
Function evaluation at minimum that has been found.
fn - Variable in class com.irurueta.numerical.interpolation.RadialBasisFunctionInterpolator
Radial basis function defining a value based on the distance of two points.
fprime(double[], double[], int, int, int) - Method in class com.irurueta.numerical.interpolation.CurveInterpolator
Utility for estimating the derivatives at the endpoints, x and y point to the abscissa and ordinate of the endpoint.
frac - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Array containing values for Laguerre method.
free(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Releases parameter at position i of linear combination of basis functions, so it can be modified again if needed.
free(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Releases parameter at position i of linear combination of basis functions, so it can be modified again if needed.
free(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Releases parameter at position i of linear combination of basis functions, so it can be modified again if needed.
free(int) - Method in class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
Releases parameter at position i of linear combination of basis functions, so it can be modified again if needed.
fret - Variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Value of the function at the minimum.
fret - Variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Value of the function at the minimum.
fret - Variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Value of the function at the minimum.
fret - Variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
value of the function at the minimum.
ftol - Variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
The fractional tolerance in the function value such that failure to decrease by more than this amount on one iteration signals doneness.
func(double) - Method in class com.irurueta.numerical.integration.ExponentialMidPointQuadrature
Evaluates function at f(-log(x))/x.
func(double) - Method in class com.irurueta.numerical.integration.InfinityMidPointQuadrature
Evaluates function at 1/x.
func(double) - Method in class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadrature
Evaluates function at 2*x*f(a0+x^2).
func(double) - Method in class com.irurueta.numerical.integration.MidPointQuadrature
Evaluates function at x.
func(double) - Method in class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadrature
Evaluates function at 2*x*f(a0+x^2).
func(double, Matrix) - Method in class com.irurueta.numerical.integration.ExponentialMidPointMatrixQuadrature
Evaluates function at f(-log(x))/x.
func(double, Matrix) - Method in class com.irurueta.numerical.integration.InfinityMidPointMatrixQuadrature
Evaluates function at 1/x.
func(double, Matrix) - Method in class com.irurueta.numerical.integration.LowerSquareRootMidPointMatrixQuadrature
Evaluates function at 2*x*f(a0+x^2).
func(double, Matrix) - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Evaluates matrix function at x.
func(double, Matrix) - Method in class com.irurueta.numerical.integration.UpperSquareRootMidPointMatrixQuadrature
Evaluates function at 2*x*f(a0+x^2).

G

gain - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
gaussian - Variable in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Array containing the Gaussian values corresponding to each bin for a single sample.
GaussianRadialBasisFunction - Class in com.irurueta.numerical.interpolation
Gaussian Radial Basis Function implementation.
GaussianRadialBasisFunction() - Constructor for class com.irurueta.numerical.interpolation.GaussianRadialBasisFunction
Constructor.
GaussianRadialBasisFunction(double) - Constructor for class com.irurueta.numerical.interpolation.GaussianRadialBasisFunction
Constructor.
gaussianSigma - Variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
Actual Gaussian sigma to be used on each sample when aggregating Gaussian functions centered at each input data sample value.
getA() - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
Returns estimated parameters of linear single dimensional function
getA() - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
Returns estimated parameters of linear single dimensional function.
getA() - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
Returns estimated parameters of linear single dimensional function.
getA() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Returns estimated "a" parameter of line following equation y = a + b*x
getA() - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Gets lower limit of integration.
getA() - Method in class com.irurueta.numerical.integration.MidPointQuadrature
Gets lower limit of integration.
getA() - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Gets lower limit of integration.
getA() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadrature
Gets lower limit of integration.
getAlgebraicDistance(DerivativePolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Computes algebraic distance of a derivative between provided polynomial and evaluation.
getAlgebraicDistance(DirectPolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Computes algebraic distance of between provided polynomial and direct evaluation.
getAlgebraicDistance(IntegralIntervalPolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Computes algebraic distance of an integration interval between provided polynomial and evaluation.
getAlgebraicDistance(IntegralPolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Computes algebraic distance of an integral between provided polynomial and evaluation.
getAlgebraicDistance(PolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Computes algebraic distance between provided polynomial and evaluation.
getAlpha() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Returns curvature matrix.
getAlpha() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Returns curvature matrix.
getAlpha() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Returns curvature matrix.
getArtifactId() - Method in class com.irurueta.numerical.BuildInfo
Obtains artifactId of this library.
getB() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Returns estimated "b" parameter of line following equation y = a + b*x
getB() - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Gets upper limit of integration.
getB() - Method in class com.irurueta.numerical.integration.MidPointQuadrature
Gets upper limit of integration.
getB() - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Gets upper limit of integration.
getB() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadrature
Gets upper limit of integration.
getBestInliersData() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Returns data related to inliers found for best result.
getBestInliersData() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Returns data related to inliers found for best result.
getBestInliersData() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Gets data related to inliers found for best result.
getBestInliersData() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Gets data related to inliers found for best result.
getBestMedianResidual() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
Returns best median of error found so far taking into account all provided samples.
getBestMedianResidual() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
Returns best median of error found so far taking into account all provided samples.
getBestMedianResidual() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Returns best median of error found so far taking into account all provided samples.
getBestNumberInliersData() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
Returns data related to solution producing the largest number of inliers.
getBestResult() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Returns best solution that has been found so far during an estimation.
getBestResult() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
Returns best solution that has been found so far during an estimation.
getBestResult() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Returns best solution that has been found so far during an estimation.
getBestResult() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Returns best solution that has been found so far during an estimation.
getBestResult() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Returns best solution that has been found so far during an estimation.
getBestResultInliersData() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
Returns data related to the best inliers found for best result.
getBeta() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Returns beta, which is the probability that a match is declared inlier by mistake, i.e.
getBeta() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Returns beta, which is the probability that a match is declared inlier by mistake, i.e.
getBranch() - Method in class com.irurueta.numerical.BuildInfo
Obtains build branch.
getBuildNumber() - Method in class com.irurueta.numerical.BuildInfo
Obtains build number.
getBuildTimestamp() - Method in class com.irurueta.numerical.BuildInfo
Obtains build timestamp.
getCacheSize() - Method in class com.irurueta.numerical.DoubleFactorialEstimator
Gets current cache size.
getCacheSize() - Method in class com.irurueta.numerical.LongFactorialEstimator
Gets current cache size.
getChi2() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Returns estimated chi square value.
getChisq() - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
Returns estimated chi square value of input data
getChisq() - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
Returns estimated chi square value of input data.
getChisq() - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
Returns estimated chi square value of input data.
getChisqDegreesOfFreedom() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Returns degrees of freedom of computed chi square value.
getChisqDegreesOfFreedom() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Returns degrees of freedom of computed chi square value.
getChisqDegreesOfFreedom() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Returns degrees of freedom of computed chi square value.
getColumns() - Method in interface com.irurueta.numerical.integration.DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener
Gets number of columns of matrix result of function f.
getColumns() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Gets number of columns of quadrature result.
getColumns() - Method in class com.irurueta.numerical.integration.MatrixQuadrature
Gets number of columns of quadrature result.
getColumns() - Method in interface com.irurueta.numerical.integration.MatrixSingleDimensionFunctionEvaluatorListener
Gets number of columns of matrix result of function f.
getColumns() - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Gets number of columns of quadrature result.
getColumns() - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Gets number of columns of quadrature result.
getCommit() - Method in class com.irurueta.numerical.BuildInfo
Obtains build commit.
getConfidence() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Returns amount of confidence expressed as a value between 0.0 and 1.0 (which is equivalent to 100%).
getConfidence() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Returns amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
getConfidence() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
Returns amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
getConfidence() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Returns amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
getConfidence() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Returns amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
getConfidence() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Returns amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
getConstants() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Gets constant terms of integral.
getConstants() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Gets constant terms of integral.
getConstantValue() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Gets constant value to use during edge extension when CONSTANT_EDGE method is being used.
getControlMatrix() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains the control matrix (B) (it is not used if there is no control).
getControlParameters() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains the number of control vector dimensions (control parameters).
getCovar() - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
Returns covariance of estimated parameters of linear single dimensional function
getCovar() - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
Returns covariance of estimated parameters of linear single dimensional function.
getCovar() - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
Returns covariance of estimated parameters of linear single dimensional function.
getD() - Method in class com.irurueta.numerical.interpolation.BarycentricRationalInterpolator
Gets order of desired approximation.
getDegree() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Gets degree of polynomial to be estimated.
getDegree() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Gets degree of polynomial to be estimated.
getDegree() - Method in class com.irurueta.numerical.polynomials.Polynomial
Gets degree of polynomial.
getDenominators() - Method in class com.irurueta.numerical.PadeApproximantEstimator.Result
Gets denominator coefficients.
getDerivativeListener() - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Returns derivative listener to get function derivative.
getDerivativeListener() - Method in class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
Returns derivative listener to evaluate a function's derivative.
getDerivativeOrder() - Method in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
Gets order of derivative.
getDirection() - Method in class com.irurueta.numerical.DirectionalEvaluator
Returns array indicating the direction of the line where the function is evaluated.
getDirection() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Returns direction to start looking for a minimum.
getDirection() - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
Returns direction to start looking for a minimum.
getDirections() - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Returns set of directions to start looking for a minimum.
getDiscriminant(double[]) - Static method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Internal method to compute the discriminant of a 2nd degree polynomial.
getDiscriminant(double[]) - Static method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Internal method to compute the discriminant of a 3rd degree polynomial.
getDistance(PolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Computes geometric or algebraic distance between provided polynomial and evaluation.
getDy() - Method in class com.irurueta.numerical.interpolation.PolynomialInterpolator
Gets an indication of the error of interpolation on the y values.
getDy() - Method in class com.irurueta.numerical.interpolation.RationalInterpolator
Gets an indication of the error of interpolation on the y values.
getDynamicParameters() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains the number of state vector dimensions (dynamic parameters).
getEdgeMethod() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Gets edge extension method to use during convolution when parts of the kernel are required to lie outside the signal's boundaries.
getEndX() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Gets end point of interval being integrated.
getErrorCovPost() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains the posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k).
getErrorCovPre() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains the priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q).
getEstimatedThreshold() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
Returns estimated threshold to determine whether samples are inliers or not.
getEstimatedThreshold() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Returns estimated threshold to determine whether samples are inliers or not.
getEta0() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Return eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
getEta0() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Return eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
getEvaluation() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
Gets evaluation of polynomial at point x.
getEvaluationAtMax() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Returns single dimension function evaluation at provided or computed maximum evaluation point where the bracket finishes.
getEvaluationAtMiddle() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Returns single dimension function evaluation at provided or computed middle evaluation point within the bracket.
getEvaluationAtMin() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Returns single dimension function evaluation at provided or computed minimum evaluation point where the bracket starts.
getEvaluationAtResult() - Method in class com.irurueta.numerical.optimization.MultiOptimizer
Returns function evaluation at estimated minimum point.
getEvaluationAtResult() - Method in class com.irurueta.numerical.optimization.SingleOptimizer
Returns function evaluation at minimum that has been found.
getEvaluations() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Gets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
getEvaluations() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Gets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
getEvaluationsAtSimplex() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Returns function evaluations at simplex points or vertices.
getExtrema() - Method in class com.irurueta.numerical.polynomials.Polynomial
Gets location of minima or maxima (i.e.
getExtrema(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
Gets location of minima or maxima (i.e.
getFunctionEvaluator() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Returns function evaluator to evaluate function at a given point and obtain function derivatives respect to each provided parameter.
getFunctionEvaluator() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Returns function evaluator to evaluate function at a given point and obtain function jacobian respect to each provided parameter.
getFunctionEvaluator() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Returns function evaluator to evaluate function at a given point and obtain function derivatives respect to each provided parameter
getFunctionEvaluator() - Method in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Returns function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point
getFunctionEvaluator() - Method in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Returns function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point.
getGain() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains the Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R).
getGaussianSigma() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Returns Gaussian sigma to be used on each sample when aggregating Gaussian functions centered at each input data sample value.
getGeometricDistance(DirectPolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Computes distance of evaluation respect to provided polynomial in a geometric sense by computing a tangent line to polynomial at point x and comparing the distance of such line to provided evaluation point.
getGeometricOrAlgebraicDistance(PolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Commutes distance of evaluation respect to provided polynomial in a geometric sense if evaluation is direct, otherwise returns algebraic distance.
getGradientListener() - Method in class com.irurueta.numerical.DirectionalDerivativeEvaluator
Returns gradient listener that evaluates a multidimensional function gradient.
getGradientListener() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Returns gradient listener in charge of obtaining gradient values for the function to be evaluated.
getGradientListener() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Returns gradient listener.
getGradientListener() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Returns gradient listener in charge of obtaining gradient values for the function to be evaluated.
getGroupId() - Method in class com.irurueta.numerical.BuildInfo
Obtains groupId of this library.
getInlierFactor() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Returns factor to normalize or adjust threshold to determine inliers.
getInlierFactor() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Returns factor to normalize or adjust threshold to determine inliers.
getInliers() - Method in class com.irurueta.numerical.robust.InliersData
Returns efficient array indicating which samples are considered inliers and which ones aren't or null if inliers are not kept.
getInliers() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
Returns efficient array indicating which samples are considered inliers and which ones aren't.
getInliers() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
Returns efficient array indicating which samples are considered inliers and which ones aren't.
getInliers() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Returns efficient array indicating which samples are considered inliers and which ones aren't.
getInliers() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator.PROSACInliersData
Returns efficient array indicating which samples are considered inliers and which ones aren't.
getInliers() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator.RANSACInliersData
Returns efficient array indicating which samples are considered inliers and which ones aren't.
getInliersData() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Returns data about inliers once estimation has been done.
getInliersData() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
Returns data about inliers once estimation has been done.
getInliersData() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Returns data about inliers once estimation has been done.
getInliersData() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Returns data about inliers once estimation has been done.
getInliersData() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Returns data about inliers once estimation has been done.
getInliersData() - Method in class com.irurueta.numerical.robust.RobustEstimator
Returns data about inliers once estimation has been done.
getInliersLMedS() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Returns inliers considering LMedS model.
getInliersMSAC() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Returns inliers considering MSAC model.
getInputData() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Returns array containing input data to be used to find the most likely value.
getInstance() - Static method in class com.irurueta.numerical.BuildInfo
Obtains singleton instance.
getIntegralOrder() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Gets integral order.
getIntegralOrder() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Gets integral order.
getIntegratorType() - Method in class com.irurueta.numerical.integration.Integrator
Gets type of integrator.
getIntegratorType() - Method in class com.irurueta.numerical.integration.MatrixIntegrator
Gets type of integrator.
getIntegratorType() - Method in class com.irurueta.numerical.integration.QuadratureIntegrator
Gets type of integrator.
getIntegratorType() - Method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Gets type of integrator.
getIntegratorType() - Method in class com.irurueta.numerical.integration.RombergIntegrator
Gets type of integrator.
getIntegratorType() - Method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Gets type of integrator.
getIntegratorType() - Method in class com.irurueta.numerical.integration.SimpsonIntegrator
Gets type of integrator.
getIntegratorType() - Method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Gets type of integrator.
getIterations() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Return number of iterations that were needed to estimate a minimum.
getIterations() - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Return number of iterations that were needed to estimate a minimum.
getIterations() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Return number of iterations that were needed to estimate a minimum.
getItmax() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Returns maximum number of iterations.
getItmax() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Returns maximum number of iterations.
getItmax() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Returns maximum number of iterations.
getKernel() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Gets kernel to convolve the signal with.
getKernelCenter() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Gets position of kernel center.
getLastErr() - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
Gets most recently computed error.
getLastVal() - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
Gets most recently computed interpolated value.
getListener() - Method in class com.irurueta.numerical.DirectionalEvaluator
Returns listener to evaluate a multidimensional function.
getListener() - Method in class com.irurueta.numerical.optimization.MultiOptimizer
Returns listener to evaluate a multidimensional function
getListener() - Method in class com.irurueta.numerical.optimization.SingleOptimizer
Returns listener to evaluate a single dimension function.
getListener() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Gets listener to be notified of events such as when estimation starts, ends or estimation progress changes.
getListener() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Gets listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
getListener() - Method in class com.irurueta.numerical.robust.RobustEstimator
Returns reference to listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
getListener() - Method in class com.irurueta.numerical.roots.SingleRootEstimator
Returns listener that evaluates a single dimension function in order to find its root.
getListener() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Gets listener in charge of attending events generated by this instance.
getM() - Method in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
Gets length of x1v array.
getM() - Method in class com.irurueta.numerical.interpolation.BilinearInterpolator
Gets length of x1v array.
getM() - Method in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Gets length of x1v array.
getMaxEvaluationPoint() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Returns maximum evaluation point whether the bracket finishes.
getMaxEvaluationPoint() - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Returns largest value inside the bracket of values where the root will be searched.
getMaxEvaluations() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Returns maximum number of evaluations to be weighted and taken into account.
getMaxima() - Method in class com.irurueta.numerical.polynomials.Polynomial
Gets location of maxima in this polynomial.
getMaxima(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
Gets location of maxima in this polynomial.
getMaxIterations() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Returns maximum allowed number of iterations.
getMaxIterations() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Maximum allowed number of iterations.
getMaxIterations() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
Maximum allowed number of iterations.
getMaxIterations() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Maximum allowed number of iterations.
getMaxIterations() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Maximum allowed number of iterations.
getMaxIterations() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Maximum allowed number of iterations.
getMaxOutliersProportion() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Returns maximum allowed outliers proportion in the input data.
getMaxOutliersProportion() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Returns maximum allowed outliers proportion in the input data.
getMaxValue() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Returns maximum value found on provided input data array.
getMeasurementMatrix() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains measurement matrix (H).
getMeasurementNoiseCov() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains the measurement noise covariance matrix (R).
getMeasurementNoiseCov() - Method in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
Obtains estimated measurement noise covariance matrix.
getMeasureParameters() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains the number of measurement vector dimensions (measure parameters).
getMeasureParams() - Method in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
Obtains the number of measurement vector dimensions (measure parameters).
getMethod() - Method in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Returns method to be used for maximum likelihood estimation, which for this class is MaximumLikelihoodEstimatorMethod.
getMethod() - Method in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Returns method to be used for maximum likelihood estimation, which for this class is MaximumLikelihoodEstimatorMethod.
getMethod() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Returns method to be used for maximum likelihood estimation on subclasses of this class.
getMethod() - Method in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Returns method being used for robust estimation.
getMethod() - Method in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Returns method being used for robust estimation.
getMethod() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Returns method being used for robust estimation.
getMethod() - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Returns method being used for robust estimation.
getMethod() - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Returns method being used for robust estimation.
getMethod() - Method in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Returns method being used for robust estimation.
getMethod() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Returns method being used for robust estimation.
getMethod() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
Returns method being used for robust estimation.
getMethod() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Returns method being used for robust estimation.
getMethod() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Returns method being used for robust estimation.
getMethod() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Returns method being used for robust estimation.
getMethod() - Method in class com.irurueta.numerical.robust.RobustEstimator
Returns method being used for robust estimation.
getMiddleEvaluationPoint() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Returns middle evaluation point within the bracket.
getMinEvaluationPoint() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Returns minimum evaluation point where the bracket starts
getMinEvaluationPoint() - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Returns smallest value inside the bracket of values where the root will be searched.
getMinima() - Method in class com.irurueta.numerical.polynomials.Polynomial
Gets location of minima in this polynomial.
getMinima(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
Gets location of minima in this polynomial.
getMinNumberOfEvaluations() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Gets minimum number of evaluations required to estimate a polynomial of the specified degree.
getMinNumberOfEvaluations() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Gets minimum number of evaluations required to estimate a polynomial of the specified degree.
getMinNumberOfEvaluations(int) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Gets minimum number of evaluations required to estimate a polynomial of the specified degree.
getMinValue() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Returns minimum value found on provided input data array.
getMm() - Method in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Gets number of rows of sub-block of ym values to be processed.
getMse() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Gets mean square error produced by estimated parameters respect to provided sample data.
getMse() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Gets mean square error produced by estimated parameters respect to provided sample data.
getMse() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Gets mean square error produced by estimated parameters respect to provided sample data.
getN() - Method in class com.irurueta.numerical.integration.MatrixQuadrature
Gets current level of refinement.
getN() - Method in class com.irurueta.numerical.integration.Quadrature
Gets current level of refinement.
getN() - Method in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
Gets length of x2v array.
getN() - Method in class com.irurueta.numerical.interpolation.BilinearInterpolator
Gets length of x2v array.
getN() - Method in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Gets length of x2v array.
getNdim() - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
Gets number of dimensions of each point.
getNdone() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Returns convergence parameter.
getNdone() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Returns convergence parameter.
getNdone() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Returns convergence parameter.
getNIters() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Returns number of iterations to be done to obtain required confidence.
getNIters() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
Returns number of iterations to be done to obtain required confidence.
getNIters() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Returns number of iterations to be done to obtain required confidence.
getNIters() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Returns number of iterations to be done to obtain required confidence.
getNIters() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Returns number of iterations to be done to obtain required confidence.
getNn() - Method in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Gets number of columns of sub-block of ym values to be processed.
getNpt() - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
Gets number of provided points.
getNumberOfBins() - Method in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Returns number of bins to be used on the histogram.
getNumberOfDimensions() - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFunctionEvaluator
Number of dimensions of points (i.e.
getNumberOfDimensions() - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFunctionEvaluator
Number of dimensions of points (i.e.
getNumberOfDimensions() - Method in interface com.irurueta.numerical.fitting.LinearFitterMultiDimensionFunctionEvaluator
Number of dimensions of points (i.e.
getNumberOfVariables() - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFunctionEvaluator
Number of variables of function f.
getNumberOfVariables() - Method in interface com.irurueta.numerical.MultiVariateFunctionEvaluatorListener
Number of variables of function f.
getNumerators() - Method in class com.irurueta.numerical.PadeApproximantEstimator.Result
Gets numerator coefficients.
getNumInliers() - Method in class com.irurueta.numerical.robust.InliersData
Returns number of inliers found.
getNumSamples() - Method in class com.irurueta.numerical.robust.SubsetSelector
Returns number of samples to select subsets from.
getNumSelected() - Method in class com.irurueta.numerical.robust.WeightSelection
Returns number of correspondences that have been selected.
getOnIterationCompletedListener() - Method in class com.irurueta.numerical.optimization.Optimizer
Gets listener to handle minimization events.
getP() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Gets the probability of finding a smaller chi square value.
getP() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Gets the probability of finding a smaller chi square value.
getP() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Gets the probability of finding a smaller chi square value.
getPoint() - Method in class com.irurueta.numerical.DirectionalEvaluator
Returns point used as a reference to determine the function's input parameters along a line.
getPolynomialParameters() - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
This method will always raise a NotAvailableException because this class only supports REAL polynomial parameters.
getPolynomialParameters() - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
Returns array containing polynomial parameters.
getPolynomialParameters() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
This method will always raise a NotAvailableException because this class only supports REAL polynomial parameters
getPolynomialParameters() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
This method will always raise a NotAvailableException because this class only supports REAL polynomial parameters.
getPolyParams() - Method in class com.irurueta.numerical.ComplexPolynomialEvaluator
Gets polynomial parameters.
getPolyParams() - Method in class com.irurueta.numerical.polynomials.Polynomial
Gets array defining parameters of polynomial.
getPolyParams() - Method in class com.irurueta.numerical.RealPolynomialEvaluator
Gets polynomial parameters.
getProcessNoiseCov() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains the process noise covariance matrix (Q).
getProgressDelta() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Returns amount of progress variation before notifying a progress change during estimation.
getProgressDelta() - Method in class com.irurueta.numerical.robust.RobustEstimator
Returns amount of progress variation before notifying a progress change during estimation.
getPsum(Matrix, double[]) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Computes the sum of the elements of each matrix column.
getQ() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Gets a measure of quality of estimated fit as a value between 0.0 and 1.0.
getQ() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Gets a measure of quality of estimated fit as a value between 0.0 and 1.0.
getQ() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Gets a measure of quality of estimated fit as a value between 0.0 and 1.0.
getQ() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Returns estimated goodness-of-fit probability (i.e.
getQuadratureType() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.InfinityMidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.InfinityMidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.Integrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.MatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.MidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.MidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergExponentialMidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergExponentialMidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergInfinityMidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergInfinityMidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergLowerSquareRootMidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergLowerSquareRootMidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergMidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergMidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergUpperSquareRootMidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergUpperSquareRootMidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonInfinityMidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonInfinityMidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonLowerSquareRootMidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonLowerSquareRootMidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonMidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonMidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonTrapezoidalQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonTrapezoidalQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonUpperSquareRootMidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonUpperSquareRootMidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadratureMatrixIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadratureIntegrator
Gets type of quadrature.
getQuadratureType() - Method in class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadratureMatrixIntegrator
Gets type of quadrature.
getQualityScores() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Returns quality scores corresponding to each polynomial evaluation.
getQualityScores() - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Returns quality scores corresponding to each provided point.
getQualityScores() - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Returns quality scores corresponding to each provided point.
getQualityScores() - Method in interface com.irurueta.numerical.robust.PROSACRobustEstimatorListener
Returns quality scores corresponding to each sample.
getRandomizer() - Method in class com.irurueta.numerical.robust.FastRandomSubsetSelector
Returns internal randomizer to generate uniformly distributed random values.
getRealPolynomialParameters() - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Returns array of first degree polynomial parameters.
getRealPolynomialParameters() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Returns array of second degree polynomial parameters.
getRealPolynomialParameters() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Returns array of third degree polynomial parameters.
getResiduals() - Method in class com.irurueta.numerical.robust.InliersData
Returns residuals obtained for each sample of data or null if residuals are not kept.
getResult() - Method in class com.irurueta.numerical.optimization.MultiOptimizer
Returns minimum point that was found.
getResult() - Method in class com.irurueta.numerical.optimization.SingleOptimizer
Returns value of the minimum that has been found.
getRoot() - Method in class com.irurueta.numerical.roots.SingleRootEstimator
Returns estimated root for a single dimension function inside a given bracket of values.
getRoots() - Method in class com.irurueta.numerical.polynomials.Polynomial
Gets roots of polynomial.
getRoots() - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
Returns array of estimated polynomial roots.
getRows() - Method in interface com.irurueta.numerical.integration.DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener
Gets number of rows of matrix result of function f.
getRows() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Gets number of rows of quadrature result.
getRows() - Method in class com.irurueta.numerical.integration.MatrixQuadrature
Gets number of rows of quadrature result.
getRows() - Method in interface com.irurueta.numerical.integration.MatrixSingleDimensionFunctionEvaluatorListener
Gets number of rows of matrix result of function f.
getRows() - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Gets number of rows of quadrature result.
getRows() - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Gets number of rows of quadrature result.
getS() - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Gets current value of integral.
getS() - Method in class com.irurueta.numerical.integration.MidPointQuadrature
Gets current value of integral.
getS() - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Gets current value of integral.
getS() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadrature
Gets current value of integral.
getSampleAverage() - Method in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
Obtains estimated sample average.
getSampleCount() - Method in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
Obtains number of samples used for estimation.
getSelected() - Method in class com.irurueta.numerical.robust.WeightSelection
Returns array indicating which correspondences have been selected (i.e.
getSig() - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
Returns standard deviations of each pair of points (x,y).
getSig() - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
Returns standard deviations of each pair of points (x,y).
getSig() - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
Returns standard deviations of each pair of points (x,y).
getSig() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Returns standard deviations of each pair of points (x,y).
getSigA() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Returns estimated standard deviation of parameter "a".
getSigB() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Returns estimated standard deviation of parameter "b".
getSigdat() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Returns estimated standard deviation of provided input data.
getSignal() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Gets signal to be convolved.
getSignalValueConstant(double[], int, double) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Internal method to determine signal value even when a position outside its boundaries is requested for constant value edge extension.
getSignalValueMirror(double[], int) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Internal method to determine signal value even when a position outside its boundaries is requested for mirror edge extension.
getSignalValueRepeat(double[], int) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Internal method to determine signal value even when a position outside its boundaries is requested for repeat edge extension.
getSignalValueZero(double[], int) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Internal method to determine signal value even when a position outside its boundaries is requested when zero edge extension is being used.
getSimplex() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Returns current simplex.
getStandardDeviation() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
Returns standard deviation of error among all provided samples respect to currently estimated result.
getStandardDeviation() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Returns standard deviation of error among all provided samples respect to currently estimated result.
getStartPoint() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Returns start point where algorithm will be started.
getStartPoint() - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
Returns start point where algorithm will be started.
getStartPoint() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Returns start point where algorithm will be started.
getStartX() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Gets start point of interval being integrated.
getStatePost() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k)).
getStatePre() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k).
getStopThreshold() - Method in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Returns threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
getStopThreshold() - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Returns threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
getStopThreshold() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Returns threshold to be used to keep the algorithm iterating in case that best threshold is not small enough.
getSubsetSize() - Method in interface com.irurueta.numerical.robust.LMedSRobustEstimatorListener
Returns size of subsets of samples to be selected.
getThreshold() - Method in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Returns threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
getThreshold() - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Returns threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
getThreshold() - Method in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Returns threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
getThreshold() - Method in interface com.irurueta.numerical.robust.RANSACRobustEstimatorListener
Threshold to determine whether samples are inliers or not.
getTol() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Returns tolerance to reach convergence.
getTol() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Returns tolerance to reach convergence.
getTol() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Returns tolerance to reach convergence.
getTol() - Method in class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
Returns tolerance to define convergence threshold for SVD.
getTol() - Method in class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
Returns tolerance to define convergence threshold for SVD.
getTolerance() - Method in class com.irurueta.numerical.optimization.BrentSingleOptimizer
Returns tolerance value, which is the accuracy to be obtained when a minimum is estimated.
getTolerance() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Returns tolerance or accuracy to be expected on estimated local minimum.
getTolerance() - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Returns tolerance value.
getTolerance() - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Returns tolerance or accuracy to be expected on estimated local minimum.
getTolerance() - Method in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
Returns tolerance value, which is the accuracy to be obtained when a minimum is estimated.
getTolerance() - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Returns tolerance or accuracy to be expected on estimated local minimum.
getTolerance() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Returns tolerance or accuracy to be expected on estimated local minimum.
getTolerance() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Returns tolerance or accuracy to be expected on estimated local minimum.
getTolerance() - Method in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
Returns tolerance to find a root.
getTolerance() - Method in class com.irurueta.numerical.roots.BrentSingleRootEstimator
Returns tolerance value.
getTolerance() - Method in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
Returns tolerance to find a root.
getTolerance() - Method in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
Returns tolerance value.
getTolerance() - Method in class com.irurueta.numerical.roots.RidderSingleRootEstimator
Returns tolerance value.
getTolerance() - Method in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
Returns tolerance value.
getTolerance() - Method in class com.irurueta.numerical.roots.SecantSingleRootEstimator
Returns tolerance value.
getTotalSamples() - Method in interface com.irurueta.numerical.robust.LMedSRobustEstimatorListener
Returns total number of samples to be randomly processed.
getTransitionMatrix() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Obtains the state transition matrix (A).
getType() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.ExponentialMidPointMatrixQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.ExponentialMidPointQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.InfinityMidPointMatrixQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.InfinityMidPointQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.LowerSquareRootMidPointMatrixQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.MatrixQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.MidPointQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.Quadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.UpperSquareRootMidPointMatrixQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadrature
Gets type of quadrature.
getType() - Method in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
Gets type of polynomial evaluation.
getType() - Method in class com.irurueta.numerical.polynomials.estimators.DirectPolynomialEvaluation
Gets type of polynomial evaluation.
getType() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Gets type of polynomial evaluation.
getType() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Gets type of polynomial evaluation.
getType() - Method in class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Returns type of polynomial estimator.
getType() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Returns type of polynomial estimator.
getType() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
Gets type of polynomial evaluation.
getType() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Returns type of polynomial estimator.
getType() - Method in class com.irurueta.numerical.robust.FastRandomSubsetSelector
Returns type of this subset selector.
getType() - Method in class com.irurueta.numerical.robust.SubsetSelector
Returns type of this subset selector.
getVersion() - Method in class com.irurueta.numerical.BuildInfo
Obtains version of this library.
getWeights() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Returns array containing a weight amount for each polynomial evaluation.
getX() - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
Returns input points x where a multidimensional function f(x1, x2, ...) is evaluated and where each column of the matrix represents each dimension of the point and each row is related to each sample corresponding to provided y pairs of values
getX() - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
Returns input points x where a multi variate function f(x1, x2, ...) is evaluated and where each column of the matrix represents each dimension of the point and each row is related to each sample corresponding to provided y pairs of values.
getX() - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
Returns input points x where function f(x) is evaluated.
getX() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Returns array containing x coordinates of input data to be fitted to a straight line.
getX() - Method in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
Gets point where polynomial derivative has been evaluated.
getX() - Method in class com.irurueta.numerical.polynomials.estimators.DirectPolynomialEvaluation
Gets point where polynomial has been evaluated.
getX() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Gets point where nth-polynomial integral has been evaluated.
getY() - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
Returns result of evaluation of multidimensional function f(x) at provided x points.
getY() - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
Returns result of evaluation of multi variate function f(x) at provided x points.
getY() - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
Returns result of evaluation of linear single dimensional function f(x) at provided x points.
getY() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Returns array containing y coordinates of input data to be fitted to a straight line.
GLIMIT - Static variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
The maximum magnification allowed for a parabolic-fit step.
GOLD - Static variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
The default ratio by which intervals are magnified and.
GoldenSingleOptimizer - Class in com.irurueta.numerical.optimization
This class for a single dimensional function's local minimum.
GoldenSingleOptimizer() - Constructor for class com.irurueta.numerical.optimization.GoldenSingleOptimizer
Empty constructor.
GoldenSingleOptimizer(SingleDimensionFunctionEvaluatorListener, double, double, double, double) - Constructor for class com.irurueta.numerical.optimization.GoldenSingleOptimizer
Constructor.
gradient(double[]) - Method in class com.irurueta.numerical.GradientEstimator
Returns the gradient of a multidimensional function at provided point.
gradient(double[], double[]) - Method in class com.irurueta.numerical.GradientEstimator
Sets estimated gradient in provided result array of a multidimensional function at provided point.
gradient(double[], double[]) - Method in class com.irurueta.numerical.SavitzkyGolayGradientEstimator
Sets estimated gradient in provided result array of a multidimensional function at provided point.
gradient(double[], double[]) - Method in class com.irurueta.numerical.SymmetricGradientEstimator
Sets estimated gradient in provided result array of a multidimensional function at provided point.
GradientEstimator - Class in com.irurueta.numerical
Class to estimate the gradient of a multidimensional function.
GradientEstimator(MultiDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.GradientEstimator
Constructor.
GradientFunctionEvaluatorListener - Interface in com.irurueta.numerical
Listener to evaluate/retrieve a multidimensional function's gradient.
gradientListener - Variable in class com.irurueta.numerical.DirectionalDerivativeEvaluator
Listener to evaluate a multidimensional function's gradient.
gradientListener - Variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Listener to obtain gradient values for the multi dimension function being evaluated.
gradientListener - Variable in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Listener to evaluate the function's gradient.
gradientListener - Variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Listener to obtain gradient values for the multi dimension function being evaluated.
GROUP_ID_KEY - Static variable in class com.irurueta.numerical.BuildInfo
Key to obtain groupID of this library from properties file.
groupId - Variable in class com.irurueta.numerical.BuildInfo
GroupId of this library.
GTOL - Static variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Convergence criterion for the zero gradient test.
GTOL - Static variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Convergence criterion for the zero gradient test.

H

h - Variable in class com.irurueta.numerical.integration.RombergIntegrator
Successive trapezoidal step sizes.
h - Variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Successive trapezoidal step sizes.
h - Variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
Successive trapezoidal step sizes.
h - Variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
Successive trapezoidal step sizes.
hasDoubleRoot() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Returns boolean indicating whether this second degree polynomial has multiple roots (for the 2nd degree case this means 2 equal roots) This is true for polynomials of the form (x - r)^2 = x^2 - 2 * r * x + r^2, where r is the double root
hasDoubleRoot(double[]) - Static method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Returns boolean indicating whether a second degree polynomial has multiple roots (for the 2nd degree case this means 2 equal roots) This is true for polynomials of the form (x - r)^2 = x^2 - 2 * r * x + r^2, where r is the double root
hasMultipleRealRoot() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Returns boolean indicating whether the polynomial has two real and equal roots and a third different one (multiplicity 2), or all three roots are real and equal (multiplicity 3).
hasMultipleRealRoot(double[]) - Static method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Returns boolean indicating whether the polynomial has two real and equal roots and a third different one (multiplicity 2), or all three roots are real and equal (multiplicity 3).
hasOneRealRootAndTwoComplexConjugateRoots() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Returns boolean indicating whether the polynomial has one real root and two complex conjugate roots.
hasOneRealRootAndTwoComplexConjugateRoots(double[]) - Static method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Returns boolean indicating whether the polynomial has one real root and two complex conjugate roots.
hasThreeDistinctRealRoots() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Returns boolean indicating whether the roots of the polynomial are three distinct and real roots or not.
hasThreeDistinctRealRoots(double[]) - Static method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Returns boolean indicating whether the roots of the polynomial are three distinct and real roots or not.
hasTwoComplexConjugateRoots() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Returns boolean indicating whether the roots of the polynomial are two complex conjugate roots or not.
hasTwoComplexConjugateRoots(double[]) - Static method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Returns boolean indicating whether the roots of the polynomial are two complex conjugate roots or not.
hasTwoDistinctRealRoots() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Returns boolean indicating whether the roots of the polynomial are two distinct and real roots or not.
hasTwoDistinctRealRoots(double[]) - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Returns boolean indicating whether the roots of the polynomial are two distinct and real roots or not.
HISTOGRAM_MAXIMUM_LIKELIHOOD_ESTIMATOR - Enum constant in enum class com.irurueta.numerical.MaximumLikelihoodEstimatorMethod
MLE method based on a histogram of all samples.
HistogramMaximumLikelihoodEstimator - Class in com.irurueta.numerical
Class to estimate the most likely value from a series of samples assumed to be normally distributed.
HistogramMaximumLikelihoodEstimator() - Constructor for class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Empty constructor.
HistogramMaximumLikelihoodEstimator(double[], double, int) - Constructor for class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Constructor.
HistogramMaximumLikelihoodEstimator(double, double, double[], double, int) - Constructor for class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Constructor.
HistogramMaximumLikelihoodEstimator(double, int) - Constructor for class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Constructor.
hmax - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Maximum step size.
hmax - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
Maximum step size.
hold(int, double) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Prevents parameter at position i of linear combination of basis functions to be modified during function fitting.
hold(int, double) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Prevents parameter at position i of linear combination of basis functions to be modified during function fitting.
hold(int, double) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Prevents parameter at position i of linear combination of basis functions to be modified during function fitting.
hold(int, double) - Method in class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
Prevents parameter at position i of linear combination of basis functions to be modified during function fitting.
hunt(double) - Method in class com.irurueta.numerical.interpolation.BaseInterpolator
Given a value x, returns a value j such that x is (insofar as possible) centered in the subrange xx[j..j+mm-1], where xx is the stored array.

I

ia - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Determines which parameters can be modified during estimation (if true) and which ones are locked (if false).
ia - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Determines which parameters can be modified during estimation (if true) and which ones are locked (if false).
ia - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Determines which parameters can be modified during estimation (if true) and which ones are locked (if false).
ia - Variable in class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
Determines which parameters can be modified during estimation (if true) and which ones are locked (if false)
imin(int, int, double) - Static method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Non randomness states that i-m (where i is the cardinal of the set of inliers for a wrong model) follows the binomial distribution B(n,beta).
imin(int, int, double) - Static method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Non randomness states that i-m (where i is the cardinal of the set of inliers for a wrong model) follows the binomial distribution B(n,beta).
improvedX - Variable in class com.irurueta.numerical.PadeApproximantEstimator
Improved LU solution in one iteration.
improveLuSolve(Matrix, Matrix, Matrix, Matrix) - Method in class com.irurueta.numerical.PadeApproximantEstimator
One step to iteratively improve LU solve solution.
improveTimes - Variable in class com.irurueta.numerical.PadeApproximantEstimator
Number of times to iteratively improve LU decomposition.
INFINITY_MID_POINT - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
Infinity mid-point.
InfinityMidPointMatrixQuadrature - Class in com.irurueta.numerical.integration
This is an exact replacement for MidPointQuadrature i.e., returns the nth stage of refinement of the integral of a function from "a" to "b", except that the function is evaluated at evenly spaced points in 1=x rather than in "x".
InfinityMidPointMatrixQuadrature(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.InfinityMidPointMatrixQuadrature
Constructor.
InfinityMidPointQuadrature - Class in com.irurueta.numerical.integration
This is an exact replacement for MidPointQuadrature i.e., returns the nth stage of refinement of the integral of a function from "a" to "b", except that the function is evaluated at evenly spaced points in 1=x rather than in x.
InfinityMidPointQuadrature(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.InfinityMidPointQuadrature
Constructor.
InfinityMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using an infinity mid-point quadrature.
InfinityMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.InfinityMidPointQuadratureIntegrator
Constructor.
InfinityMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.InfinityMidPointQuadratureIntegrator
Constructor.
InfinityMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes matrix (multivariate) function integration by using an infinity mid-point quadrature.
InfinityMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.InfinityMidPointQuadratureMatrixIntegrator
Constructor with default accuracy.
InfinityMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.InfinityMidPointQuadratureMatrixIntegrator
Constructor.
initialize(int) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
Initializes matrices being reused as long as number of rows is preserved for multiple provided input matrices for efficiency purposes.
initialize(int) - Method in class com.irurueta.numerical.PadeApproximantEstimator
Initializes required matrices.
inlierFactor - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Factor to normalize threshold to determine inliers.
inlierFactor - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Factor to normalize threshold to determine inliers.
inliers - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
Efficiently stores which samples are considered inliers and which ones aren't.
inliers - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
Efficiently stores which samples are considered inliers and which ones aren't.
inliers - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator.PROSACInliersData
Efficiently stores which samples are considered inliers and which ones aren't.
inliers - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator.RANSACInliersData
Efficiently stores which samples are considered inliers and which ones aren't.
InliersData - Class in com.irurueta.numerical.robust
Base class defining inlier data for a robust estimator.
InliersData() - Constructor for class com.irurueta.numerical.robust.InliersData
 
inliersLmeds - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Inliers considering LMedS model.
inliersMsac - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Inliers considering MSAC model.
inputData - Variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
Array containing input data to be used to find the most likely value.
INTEGRAL_EVALUATION - Enum constant in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
Evaluation of the nth-integral of a polynomial (assuming a given constant value)
INTEGRAL_INTERVAL - Enum constant in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
Interval nth-integration of a polynomial.
IntegralIntervalPolynomialEvaluation - Class in com.irurueta.numerical.polynomials.estimators
Contains an evaluation of an interval of the nth-integral of a polynomial.
IntegralIntervalPolynomialEvaluation() - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Constructor.
IntegralIntervalPolynomialEvaluation(double, double, double) - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Constructor.
IntegralIntervalPolynomialEvaluation(double, double, double, int) - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Constructor.
integralOrder - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Order of integral.
integralOrder - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Order of integral.
IntegralPolynomialEvaluation - Class in com.irurueta.numerical.polynomials.estimators
Contains an evaluation of the nth-integral of a polynomial and the point where such integral has been evaluated.
IntegralPolynomialEvaluation() - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Constructor.
IntegralPolynomialEvaluation(double, double) - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Constructor.
IntegralPolynomialEvaluation(double, double, double[]) - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Constructor.
IntegralPolynomialEvaluation(double, double, double[], int) - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Constructor.
IntegralPolynomialEvaluation(double, double, int) - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Constructor.
integrate() - Method in class com.irurueta.numerical.integration.Integrator
Integrates function between provided lower and upper limits.
integrate() - Method in class com.irurueta.numerical.integration.QuadratureIntegrator
Integrates function between provided lower and upper limits.
integrate() - Method in class com.irurueta.numerical.integration.RombergIntegrator
Integrates function between lower and upper limits defined by provided quadrature.
integrate() - Method in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
Integrates function between lower and upper limits defined by provided quadrature.
integrate() - Method in class com.irurueta.numerical.integration.SimpsonIntegrator
Integrates function between provided lower and upper limits.
integrate(Matrix) - Method in class com.irurueta.numerical.integration.MatrixIntegrator
Integrates function between provided lower and upper limits.
integrate(Matrix) - Method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Integrates function between provided lower and upper limits.
integrate(Matrix) - Method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Integrates function between provided lower and upper limits.
integrate(Matrix) - Method in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
Integrates function between provided lower and upper limits.
integrate(Matrix) - Method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Integrates function between provided lower and upper limits.
integrateInterval(double, double) - Method in class com.irurueta.numerical.polynomials.Polynomial
Integrate polynomial within provided interval.
integration() - Method in class com.irurueta.numerical.polynomials.Polynomial
Updates this instance to contain its integration using a zero constant term.
integration(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
Updates this instance to contain its integration.
integration(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes polynomial containing the integration of current one and assuming a zero constant term.
integration(Polynomial, double) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes polynomial containing the integration of current one.
integrationAndReturnNew() - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes polynomial containing the integration of current one and assuming a zero constant term.
integrationAndReturnNew(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes polynomial containing the integration of current one.
IntegrationException - Exception in com.irurueta.numerical.integration
Exception raised when function integration fails.
IntegrationException() - Constructor for exception com.irurueta.numerical.integration.IntegrationException
Constructor.
IntegrationException(String) - Constructor for exception com.irurueta.numerical.integration.IntegrationException
Constructor with String containing message.
IntegrationException(String, Throwable) - Constructor for exception com.irurueta.numerical.integration.IntegrationException
Constructor with message and cause.
IntegrationException(Throwable) - Constructor for exception com.irurueta.numerical.integration.IntegrationException
Constructor with cause.
Integrator - Class in com.irurueta.numerical.integration
Integrates single dimension functions over a specified interval.
Integrator() - Constructor for class com.irurueta.numerical.integration.Integrator
 
IntegratorType - Enum Class in com.irurueta.numerical.integration
Indicates type of integrator.
IntegratorType() - Constructor for enum class com.irurueta.numerical.integration.IntegratorType
 
internalConvolveConstant(double[], double[], int, double, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Internal method to convolve signal using constant value edge extension method.
internalConvolveMirror(double[], double[], int, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Internal method to convolve signal using a mirror extension method.
internalConvolveRepeat(double[], double[], int, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Internal method to convolve signal using a repeat extension method.
internalConvolveZero(double[], double[], int, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
Internal method to convolve signal using zero edge extension method.
internalEstimator - Variable in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Internal maximum likelihood estimator based on the Histogram method.
internalLaguer(Complex[], Complex, int[]) - Method in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Internal method to compute a root after decomposing and decreasing the degree of the polynomial.
internalSetBracket(double, double) - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Internal method to set the bracket of values (i.e.
internalSetBracket(double, double, double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Internal method to set a bracket of values.
internalSetDegree(int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Internal method to set degree of polynomial to be estimated.
internalSetEvaluations(List<PolynomialEvaluation>) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Sets list of polynomial evaluations.
internalSetEvaluationsAndWeights(List<PolynomialEvaluation>, double[]) - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Internal method to set evaluations and weights.
internalSetFunctionEvaluator(LevenbergMarquardtMultiDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Internal method to set function evaluator to evaluate function at a given point and obtain function derivatives respect to each provided parameter.
internalSetFunctionEvaluator(LevenbergMarquardtMultiVariateFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Internal method to set function evaluator to evaluate function at a given point and obtain function jacobian respect to each provided parameter.
internalSetFunctionEvaluator(LevenbergMarquardtSingleDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Internal method to set function evaluator to evaluate function at a given point and obtain function derivatives respect to each provided parameter
internalSetFunctionEvaluator(LinearFitterMultiDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Internal method to set function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point
internalSetFunctionEvaluator(LinearFitterSingleDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Internal method to set function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point.
internalSetGaussianSigma(double) - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Internal method to set Gaussian sigma to be used on each sample when aggregating Gaussian functions centered at each input data sample value.
internalSetMinMaxValues(double, double) - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Method to set internally minimum and maximum value found in input data array.
internalSetNumberOfBins(int) - Method in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Internal method to set number of bins to be used on the histogram.
internalSetPointAndDirections(double[], Matrix) - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Internal method to set start point and set of directions to start looking for minimum.
internalSetPolynomialParameters(double[]) - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Internal method to set array of first degree polynomial parameters.
internalSetPolynomialParameters(double[]) - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Internal method to set array of second degree polynomial parameters.
internalSetPolynomialParameters(double[]) - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Internal method to set array of third degree polynomial parameters.
internalSetPolynomialParameters(Complex[]) - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
This method will always raise an IllegalArgumentException because this class only supports REAL polynomial parameters.
internalSetPolynomialParameters(Complex[]) - Method in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Internal method to set parameters of a polynomial, taking into account that a polynomial of degree n is defined as: p(x) = a0 * x^n + a1 * x^(n - 1) + ...
internalSetPolynomialParameters(Complex[]) - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
Internal method to set parameters of a polynomial, taking into account that a polynomial of degree n is defined as: p(x) = a0 * x^n + a1 * x^(n - 1) + ...
internalSetPolynomialParameters(Complex[]) - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
This method will always raise an IllegalArgumentException because this class only supports REAL polynomial parameters
internalSetPolynomialParameters(Complex[]) - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
This method will always raise an IllegalArgumentException because this class only supports REAL polynomial parameters.
internalSetQualityScores(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Sets quality scores corresponding to each provided polynomial evaluation.
internalSetQualityScores(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Sets quality scores corresponding to each provided polynomial evaluation.
internalSetSimplex(double[], double) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Internal method to set a simplex as a central point and a set of surrounding points at distance delta.
internalSetSimplex(double[], double[]) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Internal method to set a simplex defined as a central point and a set of surrounding points at their corresponding distance deltas[i], where "i" corresponds to one position of provided array of distances.
internalSetSimplex(Matrix) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Internal method to Set simplex as a matrix containing on each row a point of the simplex.
internalSetStartPoint(double[]) - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Internal method to set start point where local minimum is searched nearby.
internalSetStartPoint(double[]) - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Internal method to set start point where local minimum is searched nearby.
internalSetStartPointAndDirection(double[], double[]) - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Internal method to set start point and direction to start the search for a local minimum.
internalSetStartPointAndDirection(double[], double[]) - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
Internal method to set start point and direction to start the search for a local minimum.
internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.BrentSingleOptimizer
Internal method to set algorithm tolerance.
internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Internal method to set tolerance or accuracy to be expected on estimated local minimum.
internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Internal method to set tolerance.
internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Internal method to set tolerance or accuracy to be expected on estimated local minimum.
internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
Internal method to set algorithm tolerance.
internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Internal method to set tolerance or accuracy to be expected on estimated local minimum.
internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Internal method to set tolerance or accuracy to be expected on estimated local minimum.
internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Internal method to set tolerance or accuracy to be expected on estimated local minimum.
internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
Internal method to set tolerance to find a root.
internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.BrentSingleRootEstimator
Internal method to set tolerance value.
internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
Internal method to set tolerance to find a root.
internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
Internal method to set tolerance value.
internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.RidderSingleRootEstimator
Internal method to set tolerance value.
internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
Internal method to set tolerance value.
internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.SecantSingleRootEstimator
Internal method to set tolerance value.
interpolate(double) - Method in class com.irurueta.numerical.interpolation.BarycentricRationalInterpolator
Given a value x, returns an interpolated value, using data pointed to by BaseInterpolator.xx and BaseInterpolator.yy.
interpolate(double) - Method in class com.irurueta.numerical.interpolation.BaseInterpolator
Given a value x, returns an interpolated value, using data pointed to by BaseInterpolator.xx and BaseInterpolator.yy.
interpolate(double) - Method in class com.irurueta.numerical.interpolation.CurveInterpolator
Interpolates a point on the stored curve.
interpolate(double[]) - Method in class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
Returns the interpolated function value at a dim-dimensional point pt.
interpolate(double[]) - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
Returns interpolated value at provided point.
interpolate(double[]) - Method in class com.irurueta.numerical.interpolation.RadialBasisFunctionInterpolator
Returns the interpolated function value at a dim-dimensional point pt.
interpolate(double[]) - Method in class com.irurueta.numerical.interpolation.ShepardInterpolator
Returns the interpolated function value at a dim-dimensional point pt.
interpolate(double[], double[]) - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
Returns interpolated value at provided point, and estimated error.
interpolate(double, double) - Method in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
Given values x1p an x2p, returns an interpolated value.
interpolate(double, double) - Method in class com.irurueta.numerical.interpolation.BilinearInterpolator
Given values x1p an x2p, returns an interpolated value.
interpolate(double, double) - Method in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Given values x1p an x2p, returns an interpolated value.
InterpolatingPolynomialEstimator - Class in com.irurueta.numerical.interpolation
Base class for interpolating polynomial estimators.
InterpolatingPolynomialEstimator() - Constructor for class com.irurueta.numerical.interpolation.InterpolatingPolynomialEstimator
 
InterpolationException - Exception in com.irurueta.numerical.interpolation
Exception raised when function interpolation fails.
InterpolationException() - Constructor for exception com.irurueta.numerical.interpolation.InterpolationException
Constructor.
InterpolationException(String) - Constructor for exception com.irurueta.numerical.interpolation.InterpolationException
Constructor with String containing message.
InterpolationException(String, Throwable) - Constructor for exception com.irurueta.numerical.interpolation.InterpolationException
Constructor with message and cause.
InterpolationException(Throwable) - Constructor for exception com.irurueta.numerical.interpolation.InterpolationException
Constructor with cause.
interpolator - Variable in class com.irurueta.numerical.integration.RombergIntegrator
Polynomial interpolator.
interpolator - Variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
Polynomial interpolator.
InvalidBracketRangeException - Exception in com.irurueta.numerical
Exception raised when provided bracket of values is not valid.
InvalidBracketRangeException() - Constructor for exception com.irurueta.numerical.InvalidBracketRangeException
Constructor.
InvalidBracketRangeException(String) - Constructor for exception com.irurueta.numerical.InvalidBracketRangeException
Constructor with String containing message.
InvalidBracketRangeException(String, Throwable) - Constructor for exception com.irurueta.numerical.InvalidBracketRangeException
Constructor with message and cause.
InvalidBracketRangeException(Throwable) - Constructor for exception com.irurueta.numerical.InvalidBracketRangeException
Constructor with cause.
InvalidSubsetRangeException - Exception in com.irurueta.numerical.robust
Raised if provided range of samples to pick subsets from is invalid.
InvalidSubsetRangeException() - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetRangeException
Constructor.
InvalidSubsetRangeException(String) - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetRangeException
Constructor with String containing message.
InvalidSubsetRangeException(String, Throwable) - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetRangeException
Constructor with message and cause.
InvalidSubsetRangeException(Throwable) - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetRangeException
Constructor with cause.
InvalidSubsetSizeException - Exception in com.irurueta.numerical.robust
Raised if an invalid subset size is requested on a subset selector
InvalidSubsetSizeException() - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetSizeException
Constructor.
InvalidSubsetSizeException(String) - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetSizeException
Constructor with String containing message.
InvalidSubsetSizeException(String, Throwable) - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetSizeException
Constructor with message and cause.
InvalidSubsetSizeException(Throwable) - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetSizeException
Constructor with cause.
InverseMultiQuadricRadialBasisFunction - Class in com.irurueta.numerical.interpolation
Inverse Multi-quadric Radial Function Basis implementation.
InverseMultiQuadricRadialBasisFunction() - Constructor for class com.irurueta.numerical.interpolation.InverseMultiQuadricRadialBasisFunction
Constructor.
InverseMultiQuadricRadialBasisFunction(double) - Constructor for class com.irurueta.numerical.interpolation.InverseMultiQuadricRadialBasisFunction
Constructor.
isBracketAvailable() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Returns boolean indicating whether a bracket has been provided or computed and is available for retrieval.
isBracketAvailable() - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Returns boolean indicating whether bracket has been set or not.
isComputeAndKeepInliersEnabled() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Indicates whether inliers must be computed and kept.
isComputeAndKeepInliersEnabled() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Indicates whether inliers must be computed and kept.
isComputeAndKeepResidualsEnabled() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Indicates whether residuals must be computed and kept.
isComputeAndKeepResidualsEnabled() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Indicates whether residuals must be computed and kept.
isCovarianceAdjusted() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Indicates whether covariance must be adjusted or not.
isCovarianceAdjusted() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Indicates whether covariance must be adjusted or not.
isCovarianceAdjusted() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Indicates whether covariance must be adjusted or not.
isDerivativeListenerAvailable() - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Returns boolean indicating whether derivative listener has been provided and is available for retrieval.
isDerivativeListenerAvailable() - Method in class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
Returns boolean indicating whether the derivative listener has been provided and is available for retrieval.
isDirectionAvailable() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Returns boolean indicating whether direction has already been provided and is ready for retrieval.
isDirectionAvailable() - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
Returns boolean indicating whether direction has already been provided and is ready for retrieval.
isFirstDegree() - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Returns boolean indicating whether polynomial parameters provided to this instance correspond to a valid first degree polynomial.
isFirstDegree(double[]) - Static method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Returns boolean indicating whether provided array of polynomial parameters correspond to a valid first degree polynomial.
isGeometricDistanceUsed() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Indicates whether geometric distance will be used to find outliers or algebraic distance will be used instead.
isGradientListenerAvailable() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Returns boolean indicating whether a gradient listener has already been provided and is available for retrieval.
isGradientListenerAvailable() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Returns boolean indicating whether the gradient listener has been provided and is available for retrieval.
isGradientListenerAvailable() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Returns boolean indicating whether a gradient listener has already been provided and is available for retrieval.
isHistogramInitialSolutionUsed() - Method in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Returns boolean that indicates that an initial coarse solution will be computed first by using an internal HistogramMaximumLikelihoodEstimator in order to initialize the internal BrentSingleOptimizer to obtain a more accurate solution.
isInputDataAvailable() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Returns boolean indicating whether input data has already been provided or not.
isListenerAvailable() - Method in class com.irurueta.numerical.optimization.MultiOptimizer
Returns boolean indicating whether listener has been provided and is available for retrieval.
isListenerAvailable() - Method in class com.irurueta.numerical.optimization.SingleOptimizer
Returns boolean indicating whether a listener has been provided and is available for retrieval.
isListenerAvailable() - Method in class com.irurueta.numerical.robust.RobustEstimator
Indicates whether listener has been provided and is available for retrieval.
isListenerAvailable() - Method in class com.irurueta.numerical.roots.SingleRootEstimator
Returns boolean indicating whether a listener has been provided.
isLMedSInlierModelEnabled() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Returns boolean indicating whether LMedS or MSAC inlier model is enabled.
isLMSESolutionAllowed() - Method in class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Indicates if an LMSE (Least Mean Square Error) solution is allowed if more evaluations than the required minimum are provided.
isLocked() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Returns boolean indicating whether this instance is locked because some computations are being done.
isLocked() - Method in class com.irurueta.numerical.optimization.Optimizer
Returns boolean indicating whether this instance is locked.
isLocked() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Indicates whether this instance is locked.
isLocked() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Indicates if this estimator is locked because an estimation is being computed.
isLocked() - Method in class com.irurueta.numerical.robust.RobustEstimator
Indicates if this instance is locked because estimation is being computed.
isLocked() - Method in class com.irurueta.numerical.roots.RootEstimator
Returns boolean indicating whether this instance is locked.
isMedianResidualImproved() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
Returns boolean indicating whether median residual computed in current iteration has improved respect to previous iterations.
isMedianResidualImproved() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
Returns boolean indicating whether median residual computed in current iteration has improved respect to previous iterations.
isMedianResidualImproved() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Returns boolean indicating whether median residual computed in current iteration has improved respect to previous iterations.
isPolakRibiereEnabled() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Returns boolean indicating whether Polak-Ribiere method is used or Fletcher-Reeves is used instead.
isPolakRibiereEnabled() - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Returns boolean indicating whether Polak-Ribiere method is used or Fletcher-Reeves is used instead.
isReady() - Method in class com.irurueta.numerical.fitting.Fitter
Indicates whether this instance is ready because enough input data has been provided to start the fitting process
isReady() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Indicates whether provided instance has enough data to start the function fitting.
isReady() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Indicates whether provided instance has enough data to start the function fitting.
isReady() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Indicates whether provided instance has enough data to start the function fitting.
isReady() - Method in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Indicates whether provided instance has enough data to start the function fitting.
isReady() - Method in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Indicates whether provided instance has enough data to start the function fitting.
isReady() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Indicates whether this instance is ready because enough input data has been provided to start the fitting process.
isReady() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Returns boolean indicating if enough parameters have been provided in order to start the computation of the maximum likelihood value.
isReady() - Method in class com.irurueta.numerical.optimization.BrentSingleOptimizer
Returns boolean indicating whether this instance is ready to start the estimation of a minimum or not.
isReady() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Returns boolean indicating whether this instance is ready to start the estimation of a local minimum.
isReady() - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Returns boolean indicating whether this instance is ready to start the estimation of a local minimum.
isReady() - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Returns boolean indicating whether this instance is ready to start the estimation of a local minimum.
isReady() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Returns boolean indicating whether this instance is considered to be ready to start the estimation of a minimum.
isReady() - Method in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
Returns boolean indicating whether this instance is ready to start the estimation of a minimum or not.
isReady() - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
Returns boolean indicating whether this instance is considered to be ready to start the estimation of a minimum.
isReady() - Method in class com.irurueta.numerical.optimization.MultiOptimizer
Returns boolean indicating whether this instance is ready to start the estimation of a minimum.
isReady() - Method in class com.irurueta.numerical.optimization.Optimizer
Returns boolean indicating whether this instance is ready.
isReady() - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Returns boolean indicating whether this instance is ready to start the estimation of a local minimum.
isReady() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Returns boolean indicating whether this instance is ready to start the estimation of a local minimum.
isReady() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Returns boolean indicating whether this instance is ready to start the estimation of a local minimum.
isReady() - Method in class com.irurueta.numerical.optimization.SingleOptimizer
Returns true if this instance is ready to start the minimum estimation, false otherwise.
isReady() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Determines whether estimation is ready to start with the given data and required degree of polynomial to be estimated
isReady() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Determines whether estimation is ready to start with the given data and required degree of polynomial to be estimated.
isReady() - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Indicates if estimator is ready to start the polynomial estimation.
isReady() - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Indicates if estimator is ready to start the polynomial estimation.
isReady() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Indicates if this estimator is ready to start the estimation.
isReady() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Indicates if estimator is ready to start the estimation process.
isReady() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
Indicates if estimator is ready to start the estimation process.
isReady() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Indicates if estimator is ready to start the estimation process.
isReady() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Indicates if estimator is ready to start the estimation process.
isReady() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Indicates if estimator is ready to start the estimation process.
isReady() - Method in class com.irurueta.numerical.robust.RobustEstimator
Indicates if estimator is ready to start the estimation process.
isReady() - Method in interface com.irurueta.numerical.robust.RobustEstimatorListener
Called to determine when a robust estimator is ready to start estimation.
isReady() - Method in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
Returns boolean indicating whether this instance is ready to compute a root.
isReady() - Method in class com.irurueta.numerical.roots.BrentSingleRootEstimator
Returns boolean indicating whether this instance is ready to start estimating a root.
isReady() - Method in class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
Returns boolean indicating whether enough parameters have been provided in order to start the estimation of the roots of a function.
isReady() - Method in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
Returns boolean indicating whether this instance is ready to compute a root.
isReady() - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
Returns boolean indicating whether this instance is ready to start the estimation of the polynomial roots.
isReady() - Method in class com.irurueta.numerical.roots.RidderSingleRootEstimator
Returns boolean indicating whether this instance is ready to start estimating a root.
isReady() - Method in class com.irurueta.numerical.roots.RootEstimator
Returns boolean indicating whether enough parameters have been provided in order to start the estimation of the roots of a function.
isReady() - Method in class com.irurueta.numerical.roots.SecantSingleRootEstimator
Returns boolean indicating whether this instance is ready to start estimating a root.
isReady() - Method in class com.irurueta.numerical.roots.SingleRootEstimator
Returns boolean indicating whether enough parameters have been provided in order to start the estimation of the roots of a function.
isReady() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Indicates whether this instance is ready to start a convolution.
isRealSolution() - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Returns boolean indicating whether estimated root is real.
isResultAvailable() - Method in class com.irurueta.numerical.fitting.Fitter
Returns boolean indicating whether result has been estimated and is available for retrieval
isResultAvailable() - Method in class com.irurueta.numerical.optimization.MultiOptimizer
Returns boolean indicating whether a minimum has been estimated and is available for retrieval.
isResultAvailable() - Method in class com.irurueta.numerical.optimization.SingleOptimizer
Returns boolean indicating whether the estimated minimum is available for retrieval.
isRootAvailable() - Method in class com.irurueta.numerical.roots.SingleRootEstimator
Returns boolean indicating whether a root has been estimated and is available for retrieval.
isSecondDegree() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Returns boolean indicating whether polynomial parameters provided to this instance correspond to a valid second degree polynomial.
isSecondDegree(double[]) - Static method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Returns boolean indicating whether provided array of polynomial parameters correspond to a valid second degree polynomial.
isSimplexAvailable() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Returns boolean indicating whether a simplex has been provided and is available for retrieval.
isSortWeightsEnabled() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Indicates if weights are sorted by so that largest weighted evaluations are used first.
isStartPointAvailable() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Returns boolean indicating whether start point has already been provided and is ready for retrieval.
isStartPointAvailable() - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
Returns boolean indicating whether start point has already been provided and is ready for retrieval.
isStartPointAvailable() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Returns boolean indicating whether start point has already been provided and is ready for retrieval.
isStopThresholdEnabled() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Returns boolean indicating whether the algorithm must stop prematurely when dynamically computed threshold using median of residuals has a value lower than provided threshold in listener.
isThirdDegree() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Returns boolean indicating whether polynomial parameters provided to this instance correspond to a valid third degree polynomial.
isThirdDegree(double[]) - Static method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Returns boolean indicating whether provided array of polynomial parameters correspond to a valid third degree polynomial.
isUseInlierThresholds() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Returns flag indicating whether thresholds to determine inliers are used, or if only median of residuals is used.
iter - Variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Member contains number of iterations that were needed to estimate a minimum.
iter - Variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Member contains number of iterations that were needed to estimate a minimum.
iter - Variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Member contains number of iterations that were needed to estimate a minimum.
iter - Variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Member contains number of iterations that were needed to estimate a minimum.
iterationCompletedListener - Variable in class com.irurueta.numerical.optimization.Optimizer
Listener to handle minimization events.
iters - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Number of iterations to be done to obtain required confidence.
iters - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Number of iterations to be done to obtain required confidence.
iters - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Number of iterations to be done to obtain required confidence.
itmax - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Maximum number of iterations.
itmax - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Maximum number of iterations.
itmax - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Maximum number of iterations.
ITMAX - Static variable in class com.irurueta.numerical.optimization.BrentSingleOptimizer
Is the maximum allowed number of iterations.
ITMAX - Static variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Maximum allowed iterations.
ITMAX - Static variable in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Maximum number of iterations to perform.
ITMAX - Static variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Maximum allowed iterations.
ITMAX - Static variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Maximum allowed iterations.
ITMAX - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Maximum number of iterations.
ITMAX - Static variable in class com.irurueta.numerical.roots.BrentSingleRootEstimator
Constant defining maximum number of iterations.

J

jacobian - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Jacobian of function at a given point.
jacobian(double[]) - Method in class com.irurueta.numerical.JacobianEstimator
Returns the Jacobian of a multivariate function at provided point.
jacobian(double[], Matrix) - Method in class com.irurueta.numerical.JacobianEstimator
Sets estimated jacobian in provided result matrix of a multivariate function at provided point.
JacobianEstimator - Class in com.irurueta.numerical
Class to estimate the Jacobian of a multi variate and multidimensional function.
JacobianEstimator(MultiVariateFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.JacobianEstimator
Constructor.
JMAX - Static variable in class com.irurueta.numerical.integration.QuadratureIntegrator
Maximum number of allowed steps.
JMAX - Static variable in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Maximum number of allowed steps.
JMAX - Static variable in class com.irurueta.numerical.integration.RombergIntegrator
Maximum number of allowed steps.
JMAX - Static variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Maximum number of allowed steps.
JMAX - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
Maximum number of allowed steps.
JMAX - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
Maximum number of allowed steps.
JMAX - Static variable in class com.irurueta.numerical.integration.SimpsonIntegrator
Maximum number of allowed steps.
JMAX - Static variable in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Maximum number of allowed steps.
JMAX - Static variable in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
Constant defining maximum number of iterations to estimate a root.
JMAX - Static variable in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
Maximum number of iterations.
JMAXP - Static variable in class com.irurueta.numerical.integration.RombergIntegrator
Maximum number of allowed steps + 1.
JMAXP - Static variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Maximum number of allowed steps + 1.
JMAXP - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
Maximum number of allowed steps + 1.
JMAXP - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
Maximum number of allowed steps + 1.
JMIN - Static variable in class com.irurueta.numerical.integration.QuadratureIntegrator
Minimum required number of steps.
JMIN - Static variable in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Minimum required number of steps.
JMIN - Static variable in class com.irurueta.numerical.integration.SimpsonIntegrator
Minimum required number of steps.
JMIN - Static variable in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Minimum required number of steps.
jsav - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
 

K

K - Static variable in class com.irurueta.numerical.integration.RombergIntegrator
Minimum required number of steps.
K - Static variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Minimum required number of steps.
K - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
Minimum required number of steps.
K - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
Minimum required number of steps.
KalmanFilter - Class in com.irurueta.numerical.signal.processing
Implementation of a Kalman filter.
KalmanFilter(int, int) - Constructor for class com.irurueta.numerical.signal.processing.KalmanFilter
Constructor in case of no control parameters.
KalmanFilter(int, int, int) - Constructor for class com.irurueta.numerical.signal.processing.KalmanFilter
Allocates a Kalman filter and all its matrices and initializes them.
keepInliersData(PROMedSRobustEstimator.PROMedSInliersData, int) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Keeps inliers data stored and initializes a new one with proper initial values.
kernel - Variable in class com.irurueta.numerical.signal.processing.Convolver1D
Kernel to convolve the signal with.
kernelCenter - Variable in class com.irurueta.numerical.signal.processing.Convolver1D
Position of kernel center.
KrigingInterpolator - Class in com.irurueta.numerical.interpolation
Interpolates sparsely defined points using D.G.
KrigingInterpolator(Matrix, double[]) - Constructor for class com.irurueta.numerical.interpolation.KrigingInterpolator
Constructor.
KrigingInterpolator(Matrix, double[], KrigingInterpolator.Variogram) - Constructor for class com.irurueta.numerical.interpolation.KrigingInterpolator
Constructor.
KrigingInterpolator(Matrix, double[], KrigingInterpolator.Variogram, double[]) - Constructor for class com.irurueta.numerical.interpolation.KrigingInterpolator
Constructor.
KrigingInterpolator.Variogram - Class in com.irurueta.numerical.interpolation
Variogram function.

L

LAGUER_EPS - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Constant considered as machine precision for Laguerre method.
LaguerrePolynomialRootsEstimator - Class in com.irurueta.numerical.roots
This class estimates the roots of a polynomial of degree n.
LaguerrePolynomialRootsEstimator() - Constructor for class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Empty constructor.
LaguerrePolynomialRootsEstimator(boolean) - Constructor for class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Constructor.
LaguerrePolynomialRootsEstimator(Complex[]) - Constructor for class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Constructor.
LaguerrePolynomialRootsEstimator(Complex[], boolean) - Constructor for class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Constructor.
lasterr - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
Most recently computed error.
lastval - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
Most recently computed value.
LevenbergMarquardtMultiDimensionFitter - Class in com.irurueta.numerical.fitting
Fits provided data (x, y) to a generic non-linear function using Levenberg-Marquardt iterative algorithm.
LevenbergMarquardtMultiDimensionFitter() - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Constructor.
LevenbergMarquardtMultiDimensionFitter(Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Constructor.
LevenbergMarquardtMultiDimensionFitter(Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Constructor.
LevenbergMarquardtMultiDimensionFitter(LevenbergMarquardtMultiDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Constructor.
LevenbergMarquardtMultiDimensionFitter(LevenbergMarquardtMultiDimensionFunctionEvaluator, Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Constructor.
LevenbergMarquardtMultiDimensionFitter(LevenbergMarquardtMultiDimensionFunctionEvaluator, Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Constructor.
LevenbergMarquardtMultiDimensionFunctionEvaluator - Interface in com.irurueta.numerical.fitting
Interface to evaluate non-linear multidimensional functions.
LevenbergMarquardtMultiVariateFitter - Class in com.irurueta.numerical.fitting
Fits provided data (x, y) to a generic non-linear function using Levenberg-Marquardt iterative algorithm.
LevenbergMarquardtMultiVariateFitter() - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Constructor.
LevenbergMarquardtMultiVariateFitter(Matrix, Matrix, double) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Constructor.
LevenbergMarquardtMultiVariateFitter(Matrix, Matrix, double[]) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Constructor.
LevenbergMarquardtMultiVariateFitter(LevenbergMarquardtMultiVariateFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Constructor.
LevenbergMarquardtMultiVariateFitter(LevenbergMarquardtMultiVariateFunctionEvaluator, Matrix, Matrix, double) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Constructor.
LevenbergMarquardtMultiVariateFitter(LevenbergMarquardtMultiVariateFunctionEvaluator, Matrix, Matrix, double[]) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Constructor.
LevenbergMarquardtMultiVariateFunctionEvaluator - Interface in com.irurueta.numerical.fitting
Interface to evaluate non-linear multi variate and multidimensional functions.
LevenbergMarquardtSingleDimensionFitter - Class in com.irurueta.numerical.fitting
Fits provided data (x,y) to a generic non-linear function using Levenberg-Marquardt iterative algorithm.
LevenbergMarquardtSingleDimensionFitter() - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Constructor.
LevenbergMarquardtSingleDimensionFitter(double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Constructor.
LevenbergMarquardtSingleDimensionFitter(double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Constructor.
LevenbergMarquardtSingleDimensionFitter(LevenbergMarquardtSingleDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Constructor.
LevenbergMarquardtSingleDimensionFitter(LevenbergMarquardtSingleDimensionFunctionEvaluator, double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Constructor.
LevenbergMarquardtSingleDimensionFitter(LevenbergMarquardtSingleDimensionFunctionEvaluator, double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Constructor.
LevenbergMarquardtSingleDimensionFunctionEvaluator - Interface in com.irurueta.numerical.fitting
Interface to evaluate non-linear single dimensional functions.
LinearFitterMultiDimensionFunctionEvaluator - Interface in com.irurueta.numerical.fitting
Interface to evaluate linear multidimensional functions f(x1, x2, ...) = a * f0(x1, x2, ...) + b * f1(x1, x2, ...) + ...
LinearFitterSingleDimensionFunctionEvaluator - Interface in com.irurueta.numerical.fitting
Interface to evaluate linear single dimensional functions f(x) = a * f0(x) + b * f1(x) + ...
LinearInterpolator - Class in com.irurueta.numerical.interpolation
Computes linear interpolation.
LinearInterpolator(double[], double[]) - Constructor for class com.irurueta.numerical.interpolation.LinearInterpolator
 
LineMultiOptimizer - Class in com.irurueta.numerical.optimization
Abstract class to search for a local minimum on a multidimensional function along a given line of input parameters.
LineMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.LineMultiOptimizer
Empty constructor.
LineMultiOptimizer(MultiDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.optimization.LineMultiOptimizer
Constructor.
LineMultiOptimizer(MultiDimensionFunctionEvaluatorListener, double[], double[]) - Constructor for class com.irurueta.numerical.optimization.LineMultiOptimizer
Constructor.
linmin() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Searches for a minimum along a given line of input values.
linmin() - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
Searches for a minimum along a given line of input values.
listener - Variable in class com.irurueta.numerical.DerivativeEstimator
Listener to evaluate a single dimension function.
listener - Variable in class com.irurueta.numerical.DirectionalEvaluator
Listener to evaluate a multidimensional function.
listener - Variable in class com.irurueta.numerical.GradientEstimator
Listener to evaluate a multidimensional function.
listener - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Listener to evaluate single dimension functions at required points.
listener - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
Listener to evaluate single dimension functions at required points.
listener - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Listener to evaluate single dimension matrix functions at required points.
listener - Variable in class com.irurueta.numerical.integration.MidPointQuadrature
Listener to evaluate single dimension functions at required points.
listener - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Listener to evaluate single dimension matrix functions at required points.
listener - Variable in class com.irurueta.numerical.integration.TrapezoidalQuadrature
Listener to evaluate single dimension functions at required points.
listener - Variable in class com.irurueta.numerical.JacobianEstimator
Listener to evaluate a multivariate function.
listener - Variable in class com.irurueta.numerical.optimization.MultiOptimizer
Listener to evaluate a multidimensional function.
listener - Variable in class com.irurueta.numerical.optimization.SingleOptimizer
Listener to evaluate single dimension functions.
listener - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Listener to be notified of events such as when estimation starts, ends or estimation progress changes.
listener - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
listener - Variable in class com.irurueta.numerical.robust.RobustEstimator
Listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
listener - Variable in class com.irurueta.numerical.roots.SingleRootEstimator
Listener that evaluates a single dimension function in order to find its root.
listener - Variable in class com.irurueta.numerical.signal.processing.Convolver1D
Listener in charge of attending events generated by this instance.
LMEDS - Enum constant in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
Least Median of Squares.
lmedsInlierModelEnabled - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Indicates whether LMedS or MSAC inlier model is enabled.
LMedSInliersData(int) - Constructor for class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
Constructor.
LMedSPolynomialRobustEstimator - Class in com.irurueta.numerical.polynomials.estimators
Finds the best polynomial using LMedS algorithm.
LMedSPolynomialRobustEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Constructor.
LMedSPolynomialRobustEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Constructor.
LMedSPolynomialRobustEstimator(int, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Constructor.
LMedSPolynomialRobustEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Constructor.
LMedSPolynomialRobustEstimator(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Constructor.
LMedSPolynomialRobustEstimator(PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Constructor.
LMedSPolynomialRobustEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Constructor.
LMedSPolynomialRobustEstimator(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Constructor.
LMedSRobustEstimator<T> - Class in com.irurueta.numerical.robust
This class implements LMedS (Least Median of Squares) algorithm to robustly estimate a data model.
LMedSRobustEstimator() - Constructor for class com.irurueta.numerical.robust.LMedSRobustEstimator
Constructor.
LMedSRobustEstimator(LMedSRobustEstimatorListener<T>) - Constructor for class com.irurueta.numerical.robust.LMedSRobustEstimator
Constructor with listener.
LMedSRobustEstimator.LMedSInliersData - Class in com.irurueta.numerical.robust
Contains data related to inliers estimated in one iteration.
LMedSRobustEstimatorListener<T> - Interface in com.irurueta.numerical.robust
Listener to get data samples and residuals for LMedS method.
LMSE_POLYNOMIAL_ESTIMATOR - Enum constant in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorType
Polynomial estimator using LMSE (Least Mean Square Error) solutions.
LMSEPolynomialEstimator - Class in com.irurueta.numerical.polynomials.estimators
This class defines an LMSE (Least Mean Square Error) estimator of a polynomial of a given degree using points where polynomials (or its derivatives or integrals) are evaluated.
LMSEPolynomialEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Constructor.
LMSEPolynomialEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Constructor.
LMSEPolynomialEstimator(int, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Constructor.
LMSEPolynomialEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Constructor.
LMSEPolynomialEstimator(int, List<PolynomialEvaluation>, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Constructor.
LMSEPolynomialEstimator(PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Constructor.
LMSEPolynomialEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Constructor.
LMSEPolynomialEstimator(List<PolynomialEvaluation>, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Constructor.
lnsrch(double[], double, double[], double[], double[], double[], double, boolean[]) - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Internal method to search for a minimum along a line.
locate(double) - Method in class com.irurueta.numerical.interpolation.BaseInterpolator
Given a value x, returns a value j such that x is (insofar as possible) centered in the subrange xx[j..j+mm-1], where xx is the stored array.
locked - Variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
Boolean indicating whether this instance is locked because some computations are being done.
locked - Variable in class com.irurueta.numerical.optimization.Optimizer
Boolean indicating whether this instance is locked because computations are being done.
locked - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
True when estimator is estimating radial distortion.
locked - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Indicates if this estimator is locked because an estimation is being computed.
locked - Variable in class com.irurueta.numerical.robust.RobustEstimator
Indicates if this estimator is locked because an estimation is being computed.
locked - Variable in class com.irurueta.numerical.roots.RootEstimator
Boolean indicating that this instance is locked because it is doing computations.
LockedException - Exception in com.irurueta.numerical
Exception raised when an instance is locked.
LockedException() - Constructor for exception com.irurueta.numerical.LockedException
Constructor.
LockedException(String) - Constructor for exception com.irurueta.numerical.LockedException
Constructor with String containing message.
LockedException(String, Throwable) - Constructor for exception com.irurueta.numerical.LockedException
Constructor with message and cause.
LockedException(Throwable) - Constructor for exception com.irurueta.numerical.LockedException
Constructor with cause.
LOGGER - Static variable in class com.irurueta.numerical.BuildInfo
This class logger.
LongFactorialEstimator - Class in com.irurueta.numerical
Estimates factorial values as long integer values.
LongFactorialEstimator() - Constructor for class com.irurueta.numerical.LongFactorialEstimator
Constructor with default cache size.
LongFactorialEstimator(int) - Constructor for class com.irurueta.numerical.LongFactorialEstimator
Constructor.
LOWER_SQUARE_ROOT_MID_POINT - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
Lower square root mid-point.
LowerSquareRootMidPointMatrixQuadrature - Class in com.irurueta.numerical.integration
This is an exact replacement for MidPointMatrixQuadrature, except that it allows for an inverse square-root singularity in the integrand at the lower limit "a".
LowerSquareRootMidPointMatrixQuadrature(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.LowerSquareRootMidPointMatrixQuadrature
Constructor.
LowerSquareRootMidPointQuadrature - Class in com.irurueta.numerical.integration
This is an exact replacement for MidPointQuadrature, except that it allows for an inverse square-root singularity in the integrand at the lower limit "a".
LowerSquareRootMidPointQuadrature(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadrature
Constructor.
LowerSquareRootMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Lower Square Root mid-point quadrature when lower bound integration bound lies at a function singularity.
LowerSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadratureIntegrator
Constructor.
LowerSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadratureIntegrator
Constructor.
LowerSquareRootMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Lower Square Root mid-point quadrature when lower bound integration bound lies at a function singularity.
LowerSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadratureMatrixIntegrator
Constructor.
LowerSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadratureMatrixIntegrator
Constructor.
luDecomposer - Variable in class com.irurueta.numerical.PadeApproximantEstimator
Computes LU decomposition to find denominator coefficients.

M

m - Variable in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
Length of x1v array.
m - Variable in class com.irurueta.numerical.interpolation.BilinearInterpolator
Length of x1v array.
m - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Length of x1v array.
M - Static variable in class com.irurueta.numerical.interpolation.CubicSplineInterpolator
Length of x's and y's to take into account.
M - Static variable in class com.irurueta.numerical.interpolation.LinearInterpolator
Length of x's and y's to take into account.
ma - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Number of function parameters to be estimated.
ma - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Number of function parameters to be estimated.
ma - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Number of function parameters to be estimated.
ma - Variable in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Number of function basis used as a linear combination of functions being fitted
ma - Variable in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Number of function basis used as a linear combination of functions being fitted.
MatrixIntegrator - Class in com.irurueta.numerical.integration
Integrates single dimension matrix (multivariate) functions over a specified interval.
MatrixIntegrator() - Constructor for class com.irurueta.numerical.integration.MatrixIntegrator
 
MatrixQuadrature - Class in com.irurueta.numerical.integration
Abstract base class for elementary matrix quadrature algorithms used for matrix (multivariate) single dimension function integration.
MatrixQuadrature() - Constructor for class com.irurueta.numerical.integration.MatrixQuadrature
 
MatrixSingleDimensionFunctionEvaluatorListener - Interface in com.irurueta.numerical.integration
Interface to define how matrix (multivariate) single dimension functions can be evaluated.
MAX_BETA - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Maximum allowed value for beta.
MAX_BETA - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Maximum allowed value for beta.
MAX_CONFIDENCE - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Maximum allowed confidence value.
MAX_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Maximum allowed confidence value.
MAX_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Maximum allowed confidence value.
MAX_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Maximum allowed confidence value.
MAX_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Maximum allowed confidence value.
MAX_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Maximum allowed confidence value.
MAX_ETA0 - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Maximum allowed value for eta0.
MAX_ETA0 - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Maximum allowed value for eta0.
MAX_MAX_OUTLIERS_PROPORTION - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Maximum allowed value for maximum allowed outliers proportion in the input data.
MAX_MAX_OUTLIERS_PROPORTION - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Maximum allowed value for maximum allowed outliers proportion in the input data
MAX_PROGRESS_DELTA - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Maximum allowed value for progress delta.
MAX_PROGRESS_DELTA - Static variable in class com.irurueta.numerical.robust.RobustEstimator
Maximum allowed value for progress delta.
maxEvalPoint - Variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Maximum evaluation point.
maxEvaluations - Variable in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Maximum number of evaluations to be weighted and taken into account.
MaximumLikelihoodEstimator - Class in com.irurueta.numerical
Abstract class to estimate the most likely value from a series of data assumed to be normally distributed.
MaximumLikelihoodEstimator() - Constructor for class com.irurueta.numerical.MaximumLikelihoodEstimator
Empty constructor.
MaximumLikelihoodEstimator(double) - Constructor for class com.irurueta.numerical.MaximumLikelihoodEstimator
Constructor.
MaximumLikelihoodEstimator(double[], double) - Constructor for class com.irurueta.numerical.MaximumLikelihoodEstimator
Constructor.
MaximumLikelihoodEstimator(double, double, double[], double) - Constructor for class com.irurueta.numerical.MaximumLikelihoodEstimator
Constructor.
MaximumLikelihoodEstimatorMethod - Enum Class in com.irurueta.numerical
Types of maximum likelihood estimation to determine the real value corresponding to a set of values.
MaximumLikelihoodEstimatorMethod() - Constructor for enum class com.irurueta.numerical.MaximumLikelihoodEstimatorMethod
 
MAXIT - Static variable in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
Maximum allowed number of iterations.
MAXIT - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Maximum number of iterations.
MAXIT - Static variable in class com.irurueta.numerical.roots.RidderSingleRootEstimator
Maximum number of iterations.
MAXIT - Static variable in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
Maximum number of iterations.
MAXIT - Static variable in class com.irurueta.numerical.roots.SecantSingleRootEstimator
Maximum number of iterations.
maxIterations - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Maximum allowed number of iterations.
maxIterations - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Maximum allowed number of iterations.
maxIterations - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Maximum allowed number of iterations.
maxIterations - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Maximum allowed number of iterations.
maxIterations - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Maximum allowed number of iterations.
maxIterations - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Maximum allowed number of iterations.
maxOutliersProportion - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
In this implementation, PROSAC won't stop before having reached the corresponding inliers rate on the complete data set.
maxOutliersProportion - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
In this implementation, PROSAC won't stop before having reached the corresponding inliers rate on the complete data set.
maxValue - Variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
Maximum value found on provided input data array.
measurementMatrix - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Measurement matrix (H).
measurementNoiseCov - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Measurement noise covariance matrix (R).
measurementNoiseCov - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
Estimated measurement noise covariance matrix.
MeasurementNoiseCovarianceEstimator - Class in com.irurueta.numerical.signal.processing
Estimates noise covariance matrix for a given set of measures.
MeasurementNoiseCovarianceEstimator(int) - Constructor for class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
Constructor.
medianResidual - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Median of error found on current iteration among all provided samples.
medianResidualImproved - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
Indicates whether median residual computed in current iteration has improved respect to previous iterations.
medianResidualImproved - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
Indicates whether median residual computed in current iteration has improved respect to previous iterations.
medianResidualImproved - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Indicates whether median residual computed in current iteration has improved respect to previous iterations.
mfit - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Number of parameters ot be fitted.
mfit - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Number of parameters ot be fitted.
mfit - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Number of parameters to be fitted.
MID_POINT - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
Mid-point quadrature.
MidPointMatrixQuadrature - Class in com.irurueta.numerical.integration
Implementation of matrix quadrature using mid-point algorithm.
MidPointMatrixQuadrature(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Constructor.
MidPointQuadrature - Class in com.irurueta.numerical.integration
Implementation of quadrature using mid-point algorithm.
MidPointQuadrature(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.MidPointQuadrature
Constructor.
MidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Mid-Point quadrature up to desired accuracy.
MidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.MidPointQuadratureIntegrator
Constructor with default accuracy.
MidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.MidPointQuadratureIntegrator
Constructor.
MidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes single dimension matrix (multivariate) function integration by using Mid-Point quadrature up to desired accuracy.
MidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.MidPointQuadratureMatrixIntegrator
Constructor with default accuracy.
MidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.MidPointQuadratureMatrixIntegrator
Constructor.
MIN_BETA - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Minimum allowed value for beta.
MIN_BETA - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Minimum allowed value for beta.
MIN_CONFIDENCE - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Minimum allowed confidence value.
MIN_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Minimum allowed confidence value.
MIN_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Minimum allowed confidence value.
MIN_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Minimum allowed confidence value.
MIN_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Minimum allowed confidence value.
MIN_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Minimum allowed confidence value.
MIN_DEGREE - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Minimum allowed degree to be estimated
MIN_DERIVATIVE_ORDER - Static variable in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
Minimum allowed derivative order.
MIN_ETA0 - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Minimum allowed value for eta0.
MIN_ETA0 - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Minimum allowed value for eta0.
MIN_GAUSSIAN_SIGMA - Static variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
Minimum allowed Gaussian sigma to be set for each sample.
MIN_INLER_FACTOR - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Minimum allowed value for inlier factor.
MIN_INLER_FACTOR - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Minimum allowed value for inlier factor.
MIN_INTEGRAL_ORDER - Static variable in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Minimum allowed integral order.
MIN_INTEGRAL_ORDER - Static variable in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Minimum allowed integral order.
MIN_ITERATIONS - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Minimum allowed number of iterations.
MIN_ITERATIONS - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Minimum allowed number of iterations.
MIN_ITERATIONS - Static variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Minimum allowed number of iterations.
MIN_ITERATIONS - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Minimum allowed number of iterations.
MIN_ITERATIONS - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Minimum allowed number of iterations.
MIN_ITERATIONS - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Minimum allowed number of iterations.
MIN_MAX_OUTLIERS_PROPORTION - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Minimum allowed value for maximum allowed outliers proportion in the input data.
MIN_MAX_OUTLIERS_PROPORTION - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Minimum allowed value for maximum allowed outliers proportion in the input data.
MIN_NUM_SAMPLES - Static variable in class com.irurueta.numerical.robust.SubsetSelector
Constant defining minimum amount of allowed samples.
MIN_NUMBER_OF_BINS - Static variable in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Minimum number of bins allowed on the histogram.
MIN_ORDER - Static variable in class com.irurueta.numerical.polynomials.Polynomial
Minimum derivative / integration order.
MIN_PROGRESS_DELTA - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Minimum allowed value for progress delta.
MIN_PROGRESS_DELTA - Static variable in class com.irurueta.numerical.robust.RobustEstimator
Minimum allowed value for progress delta
MIN_STOP_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Minimum value that can be set as stop threshold.
MIN_STOP_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Minimum allowed stop threshold value
MIN_STOP_THRESHOLD - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Minimum allowed stop threshold value.
MIN_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Minimum value that can be set as threshold.
MIN_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Minimum value that can be set as threshold.
MIN_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Minimum value that can be set as threshold.
MIN_THRESHOLD - Static variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Minimum allowed threshold to determine inliers.
MIN_THRESHOLD - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Minimum allowed threshold to determine inliers.
MIN_THRESHOLD - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Minimum allowed threshold to determine inliers.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.BrentSingleOptimizer
Minimum allowed tolerance.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Minimum allowed tolerance value.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Minimum allowed tolerance value.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Minimum allowed tolerance value.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
Minimum allowed tolerance.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Minimum allowed tolerance value.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Minimum allowed tolerance value.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Minimum allowed tolerance value.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
Minimum allowed tolerance that can be set.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.BrentSingleRootEstimator
Constant defining minimum allowed tolerance.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
Minimum allowed tolerance that can be set.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
Constant defining minimum allowed tolerance.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.RidderSingleRootEstimator
Constant defining minimum allowed tolerance.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
Constant defining minimum allowed tolerance.
MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.SecantSingleRootEstimator
Constant defining minimum allowed tolerance.
MIN_VALID_POLY_PARAMS_LENGTH - Static variable in class com.irurueta.numerical.polynomials.Polynomial
Minimum allowed length in polynomial parameters.
MIN_VALID_POLY_PARAMS_LENGTH - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Minimum allowed length in polynomial parameters.
minEvalPoint - Variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Minimum evaluation point.
minimize() - Method in class com.irurueta.numerical.optimization.BrentSingleOptimizer
This function estimates a function minimum within provided or computed bracket of values.
minimize() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
This function estimates a function minimum.
minimize() - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
This function estimates a function minimum within provided or computed bracket of values.
minimize() - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
This function estimates a function minimum.
minimize() - Method in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
This function estimates a function minimum within provided or computed bracket of values.
minimize() - Method in class com.irurueta.numerical.optimization.Optimizer
This function estimates a function minimum.
minimize() - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
This function estimates a function minimum.
minimize() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
This function estimates a function minimum.
minimize() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
This function estimates a function minimum.
minValue - Variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
Minimum value found on provided input data array.
MIRROR_EDGE - Enum constant in enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
When convolution kernel reaches edge of signal being convoluted, it is assumed that the signal is mirrored.
mm - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
Length of data to be taken into account on x's and y's.
mm - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Number of rows of sub-block of ym values to be processed.
mov3(double[], double[], double[], double, double, double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Moves d, e and f into a[0], b[0] and c[0].
mp - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Number of measurement vector dimensions (measure parameters).
mp - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
Number of measurement vector dimensions (measure parameters).
mpts - Variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Number of points in the simplex.
MR - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Constant that affects the number of iterations.
mrqcof(double[], Matrix, double[]) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Used by fit to evaluate the linearized fitting matrix alpha, and vector beta to calculate chi square.
mrqcof(double[], Matrix, double[]) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Used by fit to evaluate the linearized fitting matrix alpha, and vector beta to calculate chi square.
mrqcof(double[], Matrix, double[]) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Used by LevenbergMarquardtSingleDimensionFitter.fit() to evaluate the linearized fitting matrix alpha, and vector beta to calculate chi square.
MSAC - Enum constant in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
Median Sample Consensus.
MSACInliersData(int) - Constructor for class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
Constructor.
MSACPolynomialRobustEstimator - Class in com.irurueta.numerical.polynomials.estimators
Finds the best polynomial using RANSAC algorithm.
MSACPolynomialRobustEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Constructor.
MSACPolynomialRobustEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Constructor.
MSACPolynomialRobustEstimator(int, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Constructor.
MSACPolynomialRobustEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Constructor.
MSACPolynomialRobustEstimator(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Constructor.
MSACPolynomialRobustEstimator(PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Constructor.
MSACPolynomialRobustEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Constructor.
MSACPolynomialRobustEstimator(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Constructor.
MSACRobustEstimator<T> - Class in com.irurueta.numerical.robust
This class implements MSAC (Median SAmple Consensus) algorithm to robustly estimate a data model.
MSACRobustEstimator() - Constructor for class com.irurueta.numerical.robust.MSACRobustEstimator
Constructor.
MSACRobustEstimator(MSACRobustEstimatorListener<T>) - Constructor for class com.irurueta.numerical.robust.MSACRobustEstimator
Constructor.
MSACRobustEstimator.MSACInliersData - Class in com.irurueta.numerical.robust
Contains data related to inliers estimated in one iteration.
MSACRobustEstimatorListener<T> - Interface in com.irurueta.numerical.robust
Listener to get data samples and residuals for MSAC method
mse - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Mean square error.
mse - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Mean square error.
mse - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Mean square error.
MT - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Constant that affects the number of iterations.
MultiDimensionFitter - Class in com.irurueta.numerical.fitting
Base class to fit a multi dimension function y = f(x1, x2, ...) by using provided data (x, y)
MultiDimensionFitter() - Constructor for class com.irurueta.numerical.fitting.MultiDimensionFitter
Constructor
MultiDimensionFitter(Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionFitter
Constructor
MultiDimensionFitter(Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionFitter
Constructor
MultiDimensionFunctionEvaluatorListener - Interface in com.irurueta.numerical
Interface to define how multi dimension functions can be evaluated.
MultiDimensionLinearFitter - Class in com.irurueta.numerical.fitting
Base class to fit provided multidimensional data (x1, x2, ..., y1, y2, ...) to a function made of a linear combination of functions used as a basis (i.e.
MultiDimensionLinearFitter() - Constructor for class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Constructor
MultiDimensionLinearFitter(Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Constructor
MultiDimensionLinearFitter(Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Constructor
MultiDimensionLinearFitter(LinearFitterMultiDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Constructor
MultiDimensionLinearFitter(LinearFitterMultiDimensionFunctionEvaluator, Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Constructor
MultiDimensionLinearFitter(LinearFitterMultiDimensionFunctionEvaluator, Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Constructor
MultiOptimizer - Class in com.irurueta.numerical.optimization
Abstract class to search for minima on multidimensional classes.
MultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.MultiOptimizer
Empty constructor.
MultiOptimizer(MultiDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.optimization.MultiOptimizer
Constructor.
multiply(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Multiplies this polynomial with another one.
multiply(Polynomial, Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Multiplies two polynomials.
multiplyAndReturnNew(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Multiplies two polynomials and returns a new instance containing result.
multiplyByScalar(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
Multiplies all parameters of this polynomial by provided scalar.
multiplyByScalar(double, Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Multiplies all parameters of this polynomial by a scalar and stores the result into provided polynomial instance.
multiplyByScalarAndReturnNew(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
Multiplies all parameters of this polynomial by a scalar and returns a new polynomial containing the result.
MultiQuadricRadialBasisFunction - Class in com.irurueta.numerical.interpolation
Multi-quadric Radial Function Basis implementation.
MultiQuadricRadialBasisFunction() - Constructor for class com.irurueta.numerical.interpolation.MultiQuadricRadialBasisFunction
Constructor.
MultiQuadricRadialBasisFunction(double) - Constructor for class com.irurueta.numerical.interpolation.MultiQuadricRadialBasisFunction
Constructor.
MultiVariateFitter - Class in com.irurueta.numerical.fitting
Base class to fit a multi variate function [y1, y2, ...] = f([x1, x2, ...]) by using provided data (x, y).
MultiVariateFitter() - Constructor for class com.irurueta.numerical.fitting.MultiVariateFitter
Constructor.
MultiVariateFitter(Matrix, Matrix, double) - Constructor for class com.irurueta.numerical.fitting.MultiVariateFitter
Constructor.
MultiVariateFitter(Matrix, Matrix, double[]) - Constructor for class com.irurueta.numerical.fitting.MultiVariateFitter
Constructor.
MultiVariateFunctionEvaluatorListener - Interface in com.irurueta.numerical
Interface to define how multivariate functions can be evaluated.

N

n - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
Numerator of Padé approximant.
n - Variable in class com.irurueta.numerical.integration.MatrixQuadrature
Current level of refinement.
n - Variable in class com.irurueta.numerical.integration.Quadrature
Current level of refinement.
n - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
Length of x and y values to be interpolated.
n - Variable in class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
Number of points provided in a matrix as a basis for interpolation.
n - Variable in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
Length of x2v array.
n - Variable in class com.irurueta.numerical.interpolation.BilinearInterpolator
Length of x2v array.
n - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Length of x2v array.
n - Variable in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Number of dimensions on function being evaluated.
n - Variable in class com.irurueta.numerical.optimization.LineMultiOptimizer
Number of dimensions on function being evaluated.
n - Variable in class com.irurueta.numerical.PadeApproximantEstimator
Number of coefficients being processed based on provided Taylor power series ones.
N_POINTS - Static variable in class com.irurueta.numerical.SavitzkyGolayDerivativeEstimator
Number of required point to evaluate to compute derivative.
N_POINTS - Static variable in class com.irurueta.numerical.SavitzkyGolayGradientEstimator
Number of required point to evaluate to compute derivative.
ndat - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
Number of samples (x, y) in provided input data
ndat - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
Number of samples (x, y) in provided input data.
ndat - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
Number of samples (x, y) in provided input data.
ndim - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
Number of dimensions of each point.
ndim - Variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Number of dimensions of current function being optimized.
ndone - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Convergence parameter.
ndone - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Convergence parameter.
ndone - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Convergence parameter.
NewtonRaphsonSingleRootEstimator - Class in com.irurueta.numerical.roots
Finds a single dimensional function's root within a bracket of values using Newton-Raphson's method.
NewtonRaphsonSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
Empty constructor.
NewtonRaphsonSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
Constructor.
NewtonRaphsonSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
Constructor.
next() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
Returns the value of the integral at the nth stage of refinement.
next() - Method in class com.irurueta.numerical.integration.MidPointQuadrature
Returns the value of the integral at the nth stage of refinement.
next() - Method in class com.irurueta.numerical.integration.Quadrature
Returns the value of the integral at the nth stage of refinement.
next() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadrature
Returns the value of the integral at the nth stage of refinement.
next(Matrix) - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Returns the value of the integral at the nth stage of refinement.
next(Matrix) - Method in class com.irurueta.numerical.integration.MatrixQuadrature
Returns the value of the integral at the nth stage of refinement.
next(Matrix) - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Returns the value of the integral at the nth stage of refinement.
next(Matrix) - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Returns the value of the integral at the nth stage of refinement.
nfunc - Variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Number of function evaluations.
nIters - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Number of iterations to be done to obtain required confidence.
nIters - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Number of iterations to be done to obtain required confidence.
NMAX - Static variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Maximum number of iterations.
nn - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Number of columns of sub-block of ym values to be processed.
norm - Variable in class com.irurueta.numerical.interpolation.RadialBasisFunctionInterpolator
Indicates whether normalized Radial Basis Function (RBF) must be used or not.
normalize() - Method in class com.irurueta.numerical.polynomials.Polynomial
Normalizes this polynomial so that the array of parameters has unitary norm.
normalize(Matrix, Matrix, int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Normalizes rows of system matrix and values matrix to increase accuracy of linear system of equations to be solved.
normalize(Matrix, Matrix, int, double) - Static method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Normalizes rows of system matrix and values matrix to increase accuracy of linear system of equations to be solved.
normalize(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Normalizes parameters of this polynomial so that the array of parameters has unitary norm and stores result into provided instance.
normalizeAndReturnNew() - Method in class com.irurueta.numerical.polynomials.Polynomial
Normalizes parameters of this polynomial so that the array of parameters has unitary norm and returns result as a new polynomial instance.
normalizeHighestDegreeTerm() - Method in class com.irurueta.numerical.polynomials.Polynomial
Normalizes parameters of this polynomial so that the highest degree term becomes 1.0.
normalizeHighestDegreeTerm(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Normalizes parameters of this polynomial so that the highest degree term becomes 1.0 and stores result into provided instance.
normalizeHighestDegreeTermAndReturnNew() - Method in class com.irurueta.numerical.polynomials.Polynomial
Normalizes parameters of this polynomial so that the highest degree term becomes 1.0 and returns the result as a new instance.
normmax(Matrix) - Static method in class com.irurueta.numerical.ExponentialMatrixEstimator
Estimates infinite norm of provided matrix.
normMin(Matrix) - Static method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Estimates smallest norm of provided matrix.
normMin(Matrix) - Static method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Estimates smallest norm of provided matrix.
NotAvailableException - Exception in com.irurueta.numerical
Exception raised when some value cannot be retrieved, usually because it has not yet been provided or computed.
NotAvailableException() - Constructor for exception com.irurueta.numerical.NotAvailableException
Constructor.
NotAvailableException(String) - Constructor for exception com.irurueta.numerical.NotAvailableException
Constructor with String containing message.
NotAvailableException(String, Throwable) - Constructor for exception com.irurueta.numerical.NotAvailableException
Constructor with message and cause.
NotAvailableException(Throwable) - Constructor for exception com.irurueta.numerical.NotAvailableException
Constructor with cause.
NotEnoughSamplesException - Exception in com.irurueta.numerical.robust
Raised if there aren't enough samples to make a computation.
NotEnoughSamplesException() - Constructor for exception com.irurueta.numerical.robust.NotEnoughSamplesException
Constructor.
NotEnoughSamplesException(String) - Constructor for exception com.irurueta.numerical.robust.NotEnoughSamplesException
Constructor with String containing message.
NotEnoughSamplesException(String, Throwable) - Constructor for exception com.irurueta.numerical.robust.NotEnoughSamplesException
Constructor with message and cause.
NotEnoughSamplesException(Throwable) - Constructor for exception com.irurueta.numerical.robust.NotEnoughSamplesException
Constructor with cause.
NotReadyException - Exception in com.irurueta.numerical
Raised when attempting to do a certain operation and not all parameters have been provided or are correctly set.
NotReadyException() - Constructor for exception com.irurueta.numerical.NotReadyException
Constructor.
NotReadyException(String) - Constructor for exception com.irurueta.numerical.NotReadyException
Constructor with String containing message.
NotReadyException(String, Throwable) - Constructor for exception com.irurueta.numerical.NotReadyException
Constructor with message and cause.
NotReadyException(Throwable) - Constructor for exception com.irurueta.numerical.NotReadyException
Constructor with cause.
npt - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
Number of provided points.
nthDerivative(int) - Method in class com.irurueta.numerical.polynomials.Polynomial
Replaces this instance by its nth-order derivative.
nthDerivative(int, Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes nth-order derivative of polynomial.
nthDerivativeAndReturnNew(int) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes nth-order derivative of polynomial.
nthIntegration(int) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes polynomial containing the nth-order integration of current one.
nthIntegration(int, double[]) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes polynomial containing the nth-order integration of current one.
nthIntegration(int, Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes polynomial containing the nth-order integration of current one.
nthIntegration(int, Polynomial, double[]) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes polynomial containing the nth-order integration of current one.
nthIntegrationAndReturnNew(int) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes polynomial containing the nth-order integration of current one.
nthIntegrationAndReturnNew(int, double[]) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes polynomial containing the nth-order integration of current one.
nthOrderIntegrateInterval(double, double, int) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes nth-integration over provided interval.
nthOrderIntegrateInterval(double, double, int, double[]) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes nth-integration over provided interval.
NTRY - Static variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Number tries to automatically compute a bracket of values for a given function.
nugsq - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
Squared offset.
numberOfBins - Variable in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Number of bins to be used on the histogram.
numerators - Variable in class com.irurueta.numerical.PadeApproximantEstimator.Result
Numerator coefficients.
NumericalException - Exception in com.irurueta.numerical
Base class for all the exceptions in this package.
NumericalException() - Constructor for exception com.irurueta.numerical.NumericalException
Constructor.
NumericalException(String) - Constructor for exception com.irurueta.numerical.NumericalException
Constructor with String containing message.
NumericalException(String, Throwable) - Constructor for exception com.irurueta.numerical.NumericalException
Constructor with message and cause.
NumericalException(Throwable) - Constructor for exception com.irurueta.numerical.NumericalException
Constructor with cause.
numInliers - Variable in class com.irurueta.numerical.robust.InliersData
Number of inliers found on current iteration.
numSamples - Variable in class com.irurueta.numerical.robust.SubsetSelector
Total number of samples to pick subsets from.
numSelected - Variable in class com.irurueta.numerical.robust.WeightSelection
Number of correspondences that have been selected.

O

onConvolveProgressChange(float) - Method in interface com.irurueta.numerical.signal.processing.Convolver1D.Convolver1DListener
Called when convolution progress changes.
onEstimateEnd(PolynomialEstimator) - Method in interface com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorListener
Called when an estimator ends the polynomial estimation process.
onEstimateEnd(PolynomialRobustEstimator) - Method in interface com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimatorListener
Called when an estimator ends the polynomial estimation process.
onEstimateEnd(RobustEstimator<T>) - Method in interface com.irurueta.numerical.robust.RobustEstimatorListener
Called when estimation ends.
onEstimateNextIteration(PolynomialRobustEstimator, int) - Method in interface com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimatorListener
Called when estimator iterates to refine a possible solution.
onEstimateNextIteration(RobustEstimator<T>, int) - Method in interface com.irurueta.numerical.robust.RobustEstimatorListener
Called when estimator iterates to refine a possible solution.
onEstimateProgressChange(PolynomialRobustEstimator, float) - Method in interface com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimatorListener
Called when estimation progress changes significantly.
onEstimateProgressChange(RobustEstimator<T>, float) - Method in interface com.irurueta.numerical.robust.RobustEstimatorListener
Called when estimation progress changes significantly.
onEstimateStart(PolynomialEstimator) - Method in interface com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorListener
Called when an estimator starts the polynomial estimation process.
onEstimateStart(PolynomialRobustEstimator) - Method in interface com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimatorListener
Called when an estimator starts the polynomial estimation process.
onEstimateStart(RobustEstimator<T>) - Method in interface com.irurueta.numerical.robust.RobustEstimatorListener
Called when estimation starts.
onFinishConvolution() - Method in interface com.irurueta.numerical.signal.processing.Convolver1D.Convolver1DListener
Called when convolution finishes.
onIterationCompleted(Optimizer, int, Integer) - Method in interface com.irurueta.numerical.optimization.OnIterationCompletedListener
Called when an iteration is completed.
OnIterationCompletedListener - Interface in com.irurueta.numerical.optimization
Notifies of events generated by an optimizer.
onStartConvolution() - Method in interface com.irurueta.numerical.signal.processing.Convolver1D.Convolver1DListener
Called when convolution starts.
OptimizationException - Exception in com.irurueta.numerical.optimization
Raised when an optimizer cannot find a minimum on a function, usually because of lack of convergence.
OptimizationException() - Constructor for exception com.irurueta.numerical.optimization.OptimizationException
Constructor.
OptimizationException(String) - Constructor for exception com.irurueta.numerical.optimization.OptimizationException
Constructor with String containing message.
OptimizationException(String, Throwable) - Constructor for exception com.irurueta.numerical.optimization.OptimizationException
Constructor with message and cause.
OptimizationException(Throwable) - Constructor for exception com.irurueta.numerical.optimization.OptimizationException
Constructor with cause.
optimizer - Variable in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Internal optimizer to find the true maximum of the probability distribution function.
Optimizer - Class in com.irurueta.numerical.optimization
Abstract class to find function minima.
Optimizer() - Constructor for class com.irurueta.numerical.optimization.Optimizer
Empty constructor.

P

p - Variable in class com.irurueta.numerical.DirectionalEvaluator
Point currently being evaluated in the multidimensional function.
p - Variable in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
n-dimensional point containing a minimum in a given line.
p - Variable in class com.irurueta.numerical.optimization.LineMultiOptimizer
n-dimensional point containing a minimum in a given line.
p - Variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
n-dimensional start point.
p - Variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Current simplex.
PadeApproximantEstimator - Class in com.irurueta.numerical
Estimates the Padé approximant rational function by using a number of coefficients of a Taylor series.
PadeApproximantEstimator() - Constructor for class com.irurueta.numerical.PadeApproximantEstimator
Default constructor.
PadeApproximantEstimator(int) - Constructor for class com.irurueta.numerical.PadeApproximantEstimator
Constructor.
PadeApproximantEstimator.Result - Class in com.irurueta.numerical
Contains result of Padé approximant.
pi - Variable in class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
ith point to make comparisons.
pneg - Variable in class com.irurueta.numerical.interpolation.ShepardInterpolator
Negative value of p parameter controlling Shepard power-law function phi(r) = r^-p.
point - Variable in class com.irurueta.numerical.DirectionalEvaluator
Point used as a reference to determine the function's input parameters along a line.
polishRoots - Variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Indicates if roots should be refined.
Polynomial - Class in com.irurueta.numerical.polynomials
Contains a polynomial and common operations done with polynomials.
Polynomial() - Constructor for class com.irurueta.numerical.polynomials.Polynomial
Constructor.
Polynomial(double...) - Constructor for class com.irurueta.numerical.polynomials.Polynomial
Constructor.
Polynomial(int) - Constructor for class com.irurueta.numerical.polynomials.Polynomial
Constructor.
Polynomial2DInterpolator - Class in com.irurueta.numerical.interpolation
Interpolation in two dimensions.
Polynomial2DInterpolator(double[], double[], Matrix) - Constructor for class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Constructor.
Polynomial2DInterpolator(double[], double[], Matrix, int, int) - Constructor for class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Constructor.
PolynomialEstimationException - Exception in com.irurueta.numerical.polynomials.estimators
Exception raised if polynomial estimation fails.
PolynomialEstimationException() - Constructor for exception com.irurueta.numerical.polynomials.estimators.PolynomialEstimationException
Constructor.
PolynomialEstimationException(String) - Constructor for exception com.irurueta.numerical.polynomials.estimators.PolynomialEstimationException
Constructor with String containing message.
PolynomialEstimationException(String, Throwable) - Constructor for exception com.irurueta.numerical.polynomials.estimators.PolynomialEstimationException
Constructor with message and cause.
PolynomialEstimationException(Throwable) - Constructor for exception com.irurueta.numerical.polynomials.estimators.PolynomialEstimationException
Constructor with cause.
polynomialEstimator - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Internal non robust estimator of polynomial estimator.
PolynomialEstimator - Class in com.irurueta.numerical.polynomials.estimators
This class defines the interface for an estimator of a polynomial of a given degree using points where polynomials are evaluated.
PolynomialEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Constructor.
PolynomialEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Constructor.
PolynomialEstimator(int, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Constructor.
PolynomialEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Constructor.
PolynomialEstimator(int, List<PolynomialEvaluation>, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Constructor.
PolynomialEstimator(PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Constructor.
PolynomialEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Constructor.
PolynomialEstimator(List<PolynomialEvaluation>, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Constructor.
PolynomialEstimatorListener - Interface in com.irurueta.numerical.polynomials.estimators
Listener to be notified when estimation starts, finishes or any progress changes.
PolynomialEstimatorType - Enum Class in com.irurueta.numerical.polynomials.estimators
Polynomial estimator types.
PolynomialEstimatorType() - Constructor for enum class com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorType
 
PolynomialEvaluation - Class in com.irurueta.numerical.polynomials.estimators
Contains an evaluation of a polynomial and the point where the polynomial has been evaluated.
PolynomialEvaluation() - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
Constructor.
PolynomialEvaluation(double) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
Constructor.
PolynomialEvaluationType - Enum Class in com.irurueta.numerical.polynomials.estimators
Determines different types of polynomial evaluations that can be used to estimate a polynomial.
PolynomialEvaluationType() - Constructor for enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
 
PolynomialEvaluator - Class in com.irurueta.numerical
Utility class to evaluate polynomials having either real or complex coefficients.
PolynomialEvaluator() - Constructor for class com.irurueta.numerical.PolynomialEvaluator
Empty constructor.
PolynomialInterpolator - Class in com.irurueta.numerical.interpolation
Computes polynomial interpolation.
PolynomialInterpolator(double[], double[]) - Constructor for class com.irurueta.numerical.interpolation.PolynomialInterpolator
Constructor.
PolynomialInterpolator(double[], double[], int) - Constructor for class com.irurueta.numerical.interpolation.PolynomialInterpolator
Constructor.
PolynomialInterpolator(double[], double[], int, boolean) - Constructor for class com.irurueta.numerical.interpolation.PolynomialInterpolator
Constructor.
PolynomialRobustEstimator - Class in com.irurueta.numerical.polynomials.estimators
This is an abstract class for algorithms to robustly find the best Polynomial for provided collection of evaluations.
PolynomialRobustEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Constructor.
PolynomialRobustEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Constructor.
PolynomialRobustEstimator(int, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Constructor.
PolynomialRobustEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Constructor.
PolynomialRobustEstimator(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Constructor.
PolynomialRobustEstimator(PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Constructor.
PolynomialRobustEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Constructor.
PolynomialRobustEstimator(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Constructor.
PolynomialRobustEstimatorListener - Interface in com.irurueta.numerical.polynomials.estimators
Listener to be notified of events such as when estimation starts, ends or when progress changes.
PolynomialRootsEstimator - Class in com.irurueta.numerical.roots
Abstract class to estimate the roots of a polynomial.
PolynomialRootsEstimator() - Constructor for class com.irurueta.numerical.roots.PolynomialRootsEstimator
Empty constructor.
PolynomialsException - Exception in com.irurueta.numerical.polynomials
Base exception for polynomials.
PolynomialsException() - Constructor for exception com.irurueta.numerical.polynomials.PolynomialsException
Constructor.
PolynomialsException(String) - Constructor for exception com.irurueta.numerical.polynomials.PolynomialsException
Constructor with String containing message.
PolynomialsException(String, Throwable) - Constructor for exception com.irurueta.numerical.polynomials.PolynomialsException
Constructor with message and cause.
PolynomialsException(Throwable) - Constructor for exception com.irurueta.numerical.polynomials.PolynomialsException
Constructor with cause.
polyParams - Variable in class com.irurueta.numerical.ComplexPolynomialEvaluator
Polynomial coefficients.
polyParams - Variable in class com.irurueta.numerical.polynomials.Polynomial
Array containing parameters defining a polynomial.
polyParams - Variable in class com.irurueta.numerical.RealPolynomialEvaluator
Polynomial coefficients.
polyParams - Variable in class com.irurueta.numerical.roots.PolynomialRootsEstimator
Array containing parameters of a polynomial, taking into account that a polynomial of degree n is defined as: p(x) = a0 * x^n + a1 * x^(n - 1) + ...
PowellMultiOptimizer - Class in com.irurueta.numerical.optimization
This class searches for a multi dimension function local minimum.
PowellMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.PowellMultiOptimizer
Empty constructor.
PowellMultiOptimizer(MultiDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.optimization.PowellMultiOptimizer
Constructor.
PowellMultiOptimizer(MultiDimensionFunctionEvaluatorListener, double[], Matrix, double) - Constructor for class com.irurueta.numerical.optimization.PowellMultiOptimizer
Constructor.
predict() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Estimates subsequent model state without control parameters.
predict(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Estimates subsequent model state.
processNoiseCov - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Process noise covariance matrix (Q).
progressDelta - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Amount of progress variation before notifying a progress change during estimation.
progressDelta - Variable in class com.irurueta.numerical.robust.RobustEstimator
Amount of progress variation before notifying a progress change during estimation.
PROMEDS - Enum constant in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
Progressive Median of Squares.
PROMedSInliersData(int) - Constructor for class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Constructor.
PROMedSPolynomialRobustEstimator - Class in com.irurueta.numerical.polynomials.estimators
Finds the best polynomial using PROMedS algorithm.
PROMedSPolynomialRobustEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Constructor.
PROMedSPolynomialRobustEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Constructor.
PROMedSPolynomialRobustEstimator(int, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Constructor.
PROMedSPolynomialRobustEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Constructor.
PROMedSPolynomialRobustEstimator(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Constructor.
PROMedSPolynomialRobustEstimator(PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Constructor.
PROMedSPolynomialRobustEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Constructor.
PROMedSPolynomialRobustEstimator(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Constructor.
PROMedSRobustEstimator<T> - Class in com.irurueta.numerical.robust
This class implements PROMedS (PROgressive least Median Sample) algorithm to robustly estimate a data model.
PROMedSRobustEstimator() - Constructor for class com.irurueta.numerical.robust.PROMedSRobustEstimator
Constructor.
PROMedSRobustEstimator(PROMedSRobustEstimatorListener<T>) - Constructor for class com.irurueta.numerical.robust.PROMedSRobustEstimator
Constructor with listener.
PROMedSRobustEstimator.PROMedSInliersData - Class in com.irurueta.numerical.robust
Contains data related to inliers estimated in one iteration.
PROMedSRobustEstimatorListener<T> - Interface in com.irurueta.numerical.robust
Listener to get data samples and residuals for PROMedS method.
PROSAC - Enum constant in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
Progressive Sample Consensus.
PROSACInliersData(int, boolean, boolean) - Constructor for class com.irurueta.numerical.robust.PROSACRobustEstimator.PROSACInliersData
 
PROSACPolynomialRobustEstimator - Class in com.irurueta.numerical.polynomials.estimators
Finds the best polynomial using PROSAC algorithm.
PROSACPolynomialRobustEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Constructor.
PROSACPolynomialRobustEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Constructor.
PROSACPolynomialRobustEstimator(int, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Constructor.
PROSACPolynomialRobustEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Constructor.
PROSACPolynomialRobustEstimator(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Constructor.
PROSACPolynomialRobustEstimator(PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Constructor.
PROSACPolynomialRobustEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Constructor.
PROSACPolynomialRobustEstimator(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Constructor.
PROSACRobustEstimator<T> - Class in com.irurueta.numerical.robust
This class implements PROSAC (PROgressive random SAmple Consensus) algorithm to robustly estimate a data model.
PROSACRobustEstimator() - Constructor for class com.irurueta.numerical.robust.PROSACRobustEstimator
Constructor.
PROSACRobustEstimator(PROSACRobustEstimatorListener<T>) - Constructor for class com.irurueta.numerical.robust.PROSACRobustEstimator
Constructor with listener.
PROSACRobustEstimator.PROSACInliersData - Class in com.irurueta.numerical.robust
Contains data related to estimated inliers.
PROSACRobustEstimatorListener<T> - Interface in com.irurueta.numerical.robust
Listener to get data samples and residuals for PROSAC method
pts - Variable in class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
Matrix containing points to interpolate from.

Q

q - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
Estimated goodness-of-fit probability (i.e.
q - Variable in class com.irurueta.numerical.integration.QuadratureIntegrator
Quadrature used for integration.
q - Variable in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Quadrature used for integration.
q - Variable in class com.irurueta.numerical.integration.RombergIntegrator
Quadrature used for integration.
q - Variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Quadrature used for integration.
q - Variable in class com.irurueta.numerical.integration.SimpsonIntegrator
Quadrature used for integration.
q - Variable in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Quadrature used for integration.
q - Variable in class com.irurueta.numerical.PadeApproximantEstimator
Contains matrix to solve Padé coefficients.
Quadrature - Class in com.irurueta.numerical.integration
Abstract base class for elementary quadrature algorithms used for function integration.
Quadrature() - Constructor for class com.irurueta.numerical.integration.Quadrature
 
QUADRATURE - Enum constant in enum class com.irurueta.numerical.integration.IntegratorType
Quadrature integrator.
QuadratureIntegrator<T extends Quadrature> - Class in com.irurueta.numerical.integration
Integrates functions given a quadrature implementation up to desired accuracy.
QuadratureIntegrator(T, double) - Constructor for class com.irurueta.numerical.integration.QuadratureIntegrator
Constructor.
QuadratureMatrixIntegrator<T extends MatrixQuadrature> - Class in com.irurueta.numerical.integration
Integrates matrix (multivariate) single dimension functions given a quadrature implementation up to desired accuracy.
QuadratureMatrixIntegrator(T, double) - Constructor for class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
Constructor.
QuadratureType - Enum Class in com.irurueta.numerical.integration
Indicates type of quadrature.
QuadratureType() - Constructor for enum class com.irurueta.numerical.integration.QuadratureType
 
qualityScores - Variable in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Quality scores corresponding to each provided polynomial evaluation.
qualityScores - Variable in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Quality scores corresponding to each provided polynomial evaluation.
QuasiNewtonMultiOptimizer - Class in com.irurueta.numerical.optimization
This class searches for a multi dimension function local minimum.
QuasiNewtonMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Empty constructor.
QuasiNewtonMultiOptimizer(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Constructor.
QuasiNewtonMultiOptimizer(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double[], double) - Constructor for class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Constructor.

R

R - Static variable in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
Golden ratio.
r0 - Variable in class com.irurueta.numerical.interpolation.GaussianRadialBasisFunction
Scale factor.
r0 - Variable in class com.irurueta.numerical.interpolation.ThinPlateRadialBasisFunction
Scale factor.
r02 - Variable in class com.irurueta.numerical.interpolation.InverseMultiQuadricRadialBasisFunction
Squared r0 value, which is a scale factor.
r02 - Variable in class com.irurueta.numerical.interpolation.MultiQuadricRadialBasisFunction
Squared r0 value, which is a scale factor.
rad(double[], double[]) - Method in class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
Computes the euclidean distance between two points.
rad(double[], double[]) - Method in class com.irurueta.numerical.interpolation.CurveInterpolator
Computes the euclidean distance between two points.
RadialBasisFunction - Interface in com.irurueta.numerical.interpolation
Interface defining a Radial Basis Function (RBF) to be used for interpolation.
RadialBasisFunctionInterpolator - Class in com.irurueta.numerical.interpolation
Interpolates sparsely defined points of dimension "dim" using a Radial Basis Function.
RadialBasisFunctionInterpolator(Matrix, double[], RadialBasisFunction) - Constructor for class com.irurueta.numerical.interpolation.RadialBasisFunctionInterpolator
Constructor.
RadialBasisFunctionInterpolator(Matrix, double[], RadialBasisFunction, boolean) - Constructor for class com.irurueta.numerical.interpolation.RadialBasisFunctionInterpolator
Constructor.
randomizer - Variable in class com.irurueta.numerical.robust.FastRandomSubsetSelector
Randomizer to pick random indexes.
RANSAC - Enum constant in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
Random Sample Consensus.
RANSACInliersData(int, boolean, boolean) - Constructor for class com.irurueta.numerical.robust.RANSACRobustEstimator.RANSACInliersData
Constructor.
RANSACPolynomialRobustEstimator - Class in com.irurueta.numerical.polynomials.estimators
Finds the best polynomial using RANSAC algorithm.
RANSACPolynomialRobustEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Constructor.
RANSACPolynomialRobustEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Constructor.
RANSACPolynomialRobustEstimator(int, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Constructor.
RANSACPolynomialRobustEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Constructor.
RANSACPolynomialRobustEstimator(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Constructor.
RANSACPolynomialRobustEstimator(PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Constructor.
RANSACPolynomialRobustEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Constructor.
RANSACPolynomialRobustEstimator(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Constructor.
RANSACRobustEstimator<T> - Class in com.irurueta.numerical.robust
This class implements RANSAC (RANdom SAmple Consensus) algorithm to robustly estimate a data model.
RANSACRobustEstimator() - Constructor for class com.irurueta.numerical.robust.RANSACRobustEstimator
Constructor.
RANSACRobustEstimator(RANSACRobustEstimatorListener<T>) - Constructor for class com.irurueta.numerical.robust.RANSACRobustEstimator
Constructor with listener.
RANSACRobustEstimator.RANSACInliersData - Class in com.irurueta.numerical.robust
Contains data related to estimated inliers.
RANSACRobustEstimatorListener<T> - Interface in com.irurueta.numerical.robust
Listener to get data samples and residuals for RANSAC method
RationalInterpolator - Class in com.irurueta.numerical.interpolation
Computes rational interpolation.
RationalInterpolator(double[], double[]) - Constructor for class com.irurueta.numerical.interpolation.RationalInterpolator
Constructor.
RationalInterpolator(double[], double[], int) - Constructor for class com.irurueta.numerical.interpolation.RationalInterpolator
Constructor.
rawinterp(int, double) - Method in class com.irurueta.numerical.interpolation.BarycentricRationalInterpolator
Actual interpolation method.
rawinterp(int, double) - Method in class com.irurueta.numerical.interpolation.BaseInterpolator
Actual interpolation method to be implemented by subclasses.
rawinterp(int, double) - Method in class com.irurueta.numerical.interpolation.CubicSplineInterpolator
Actual interpolation method.
rawinterp(int, double) - Method in class com.irurueta.numerical.interpolation.LinearInterpolator
Actual interpolation method to be implemented by subclasses.
rawinterp(int, double) - Method in class com.irurueta.numerical.interpolation.PolynomialInterpolator
Actual interpolation method.
rawinterp(int, double) - Method in class com.irurueta.numerical.interpolation.RationalInterpolator
Actual interpolation method.
rdist(double[], double[]) - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
Computes euclidean distance between two points.
RealPolynomialEvaluator - Class in com.irurueta.numerical
Utility class to evaluate real polynomials.
RealPolynomialEvaluator(double[]) - Constructor for class com.irurueta.numerical.RealPolynomialEvaluator
Constructor.
realPolyParams - Variable in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Array containing parameters of a first degree polynomial.
realPolyParams - Variable in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Array containing parameters of a second degree polynomial.
realPolyParams - Variable in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Array containing parameters of a second degree polynomial.
reference - Static variable in class com.irurueta.numerical.BuildInfo
Singleton stored in a soft reference (to keep it cached in memory unless memory is claimed).
relativeError(int, int) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
Estimates relative error achieved by this algorithm for provided input values.
REPEAT_EDGE - Enum constant in enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
When convolution kernel reaches edge of signal being convoluted, it is assumed that the signal is repeated indefinitely.
residual - Variable in class com.irurueta.numerical.PadeApproximantEstimator
Contains residual to iteratively improve LU solution.
residuals - Variable in class com.irurueta.numerical.robust.InliersData
Residuals obtained for each sample of data.
Result(double[], double[]) - Constructor for class com.irurueta.numerical.PadeApproximantEstimator.Result
Constructor.
resultAvailable - Variable in class com.irurueta.numerical.fitting.Fitter
Indicates whether result has been estimated and is available for retrieval
resultAvailable - Variable in class com.irurueta.numerical.optimization.MultiOptimizer
Boolean indicating whether a minimum has already been found or not.
resultAvailable - Variable in class com.irurueta.numerical.optimization.SingleOptimizer
Boolean indicating whether a minimum has been found and is available for retrieval.
reverse(int[]) - Static method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Reverses provided array.
reverse(int[]) - Static method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Reverses provided array.
RidderSingleRootEstimator - Class in com.irurueta.numerical.roots
Computes a root for a single dimension function inside a given bracket of values, in other words, root will only be searched within provided minimum and maximum evaluation points.
RidderSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.RidderSingleRootEstimator
Empty constructor.
RidderSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.RidderSingleRootEstimator
Constructor.
RobustEstimator<T> - Class in com.irurueta.numerical.robust
Robust estimator to estimate some object in a robust manner
RobustEstimator() - Constructor for class com.irurueta.numerical.robust.RobustEstimator
Constructor.
RobustEstimator(RobustEstimatorListener<T>) - Constructor for class com.irurueta.numerical.robust.RobustEstimator
Constructor.
RobustEstimatorException - Exception in com.irurueta.numerical.robust
Raised if estimation on a RobustEstimator fails.
RobustEstimatorException() - Constructor for exception com.irurueta.numerical.robust.RobustEstimatorException
Constructor.
RobustEstimatorException(String) - Constructor for exception com.irurueta.numerical.robust.RobustEstimatorException
Constructor with String containing message.
RobustEstimatorException(String, Throwable) - Constructor for exception com.irurueta.numerical.robust.RobustEstimatorException
Constructor with message and cause.
RobustEstimatorException(Throwable) - Constructor for exception com.irurueta.numerical.robust.RobustEstimatorException
Constructor with cause.
RobustEstimatorListener<T> - Interface in com.irurueta.numerical.robust
Listener to be notified of events on a robust estimator such as when estimation starts, ends or when progress changes.
RobustEstimatorMethod - Enum Class in com.irurueta.numerical.robust
Enumerator containing different robust estimation algorithms.
RobustEstimatorMethod() - Constructor for enum class com.irurueta.numerical.robust.RobustEstimatorMethod
 
ROMBERG - Enum constant in enum class com.irurueta.numerical.integration.IntegratorType
Romberg integrator.
RombergDoubleExponentialRuleQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg's method and double exponential quadrature.
RombergDoubleExponentialRuleQuadratureIntegrator(double, double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
Constructor with default accuracy.
RombergDoubleExponentialRuleQuadratureIntegrator(double, double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
Constructor.
RombergDoubleExponentialRuleQuadratureIntegrator(double, double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
Constructor with default accuracy.
RombergDoubleExponentialRuleQuadratureIntegrator(double, double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
Constructor.
RombergDoubleExponentialRuleQuadratureIntegrator(double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
Constructor with default accuracy and default maximum step size.
RombergDoubleExponentialRuleQuadratureIntegrator(double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
Constructor with default maximum step size.
RombergDoubleExponentialRuleQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
Constructor with default accuracy and default maximum step size.
RombergDoubleExponentialRuleQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
Constructor.
RombergDoubleExponentialRuleQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg's method and double exponential quadrature.
RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default accuracy.
RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor.
RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default accuracy.
RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor.
RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default accuracy and default maximum step size.
RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor.
RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default accuracy and default maximum step size.
RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor.
RombergExponentialMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg's method and exponential quadrature.
RombergExponentialMidPointQuadratureIntegrator(double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergExponentialMidPointQuadratureIntegrator
Constructor with default accuracy.
RombergExponentialMidPointQuadratureIntegrator(double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergExponentialMidPointQuadratureIntegrator
Constructor.
RombergExponentialMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg's method and exponential quadrature.
RombergExponentialMidPointQuadratureMatrixIntegrator(double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergExponentialMidPointQuadratureMatrixIntegrator
Constructor with default accuracy.
RombergExponentialMidPointQuadratureMatrixIntegrator(double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergExponentialMidPointQuadratureMatrixIntegrator
Constructor.
RombergInfinityMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg's method and Infinity mid-point quadrature.
RombergInfinityMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergInfinityMidPointQuadratureIntegrator
Constructor.
RombergInfinityMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergInfinityMidPointQuadratureIntegrator
Constructor.
RombergInfinityMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg's method and Infinity mid-point quadrature.
RombergInfinityMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergInfinityMidPointQuadratureMatrixIntegrator
Constructor.
RombergInfinityMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergInfinityMidPointQuadratureMatrixIntegrator
Constructor.
RombergIntegrator<T extends Quadrature> - Class in com.irurueta.numerical.integration
Base integrator for implementations based on Romberg's method.
RombergIntegrator(T, double) - Constructor for class com.irurueta.numerical.integration.RombergIntegrator
Constructor.
RombergLowerSquareRootMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg's method and Lower Square Root Mid-Point Quadrature when lower integration bound lies at a function singularity.
RombergLowerSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergLowerSquareRootMidPointQuadratureIntegrator
Constructor with default accuracy.
RombergLowerSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergLowerSquareRootMidPointQuadratureIntegrator
Constructor.
RombergLowerSquareRootMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg's method and Lower Square Root Mid-Point Quadrature when lower integration bound lies at a function singularity.
RombergLowerSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergLowerSquareRootMidPointQuadratureMatrixIntegrator
Constructor with default accuracy.
RombergLowerSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergLowerSquareRootMidPointQuadratureMatrixIntegrator
Constructor.
RombergMatrixIntegrator<T extends MatrixQuadrature> - Class in com.irurueta.numerical.integration
Base integrator for implementations based on Romberg's method.
RombergMatrixIntegrator(T, double) - Constructor for class com.irurueta.numerical.integration.RombergMatrixIntegrator
Constructor.
RombergMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg's method and Mid-Point Quadrature.
RombergMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergMidPointQuadratureIntegrator
Constructor with default accuracy.
RombergMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergMidPointQuadratureIntegrator
Constructor.
RombergMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg's method and Mid-Point Quadrature.
RombergMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergMidPointQuadratureMatrixIntegrator
Constructor with default accuracy.
RombergMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergMidPointQuadratureMatrixIntegrator
Constructor.
RombergTrapezoidalQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg integration.
RombergTrapezoidalQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
Constructor with default accuracy.
RombergTrapezoidalQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
Constructor.
RombergTrapezoidalQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes matrix function integration by using Romberg integration.
RombergTrapezoidalQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
Constructor with default accuracy.
RombergTrapezoidalQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
Constructor.
RombergUpperSquareRootMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg's method and Upper Square Root Mid-Point Quadrature when upper integration bound lies at a function singularity.
RombergUpperSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergUpperSquareRootMidPointQuadratureIntegrator
Constructor with default accuracy.
RombergUpperSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergUpperSquareRootMidPointQuadratureIntegrator
Constructor.
RombergUpperSquareRootMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Romberg's method and Upper Square Root Mid-Point Quadrature when upper integration bound lies at a function singularity.
RombergUpperSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergUpperSquareRootMidPointQuadratureMatrixIntegrator
Constructor with default accuracy.
RombergUpperSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergUpperSquareRootMidPointQuadratureMatrixIntegrator
Constructor.
root - Variable in class com.irurueta.numerical.roots.SingleRootEstimator
Root that has been found.
ROOT_THREE - Static variable in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Constant defining the squared root of three.
rootAvailable - Variable in class com.irurueta.numerical.roots.SingleRootEstimator
Boolean indicating that a root has been computed and is available to be retrieved.
RootEstimationException - Exception in com.irurueta.numerical.roots
Raised when a root estimator cannot determine a root of a polynomial, usually because of lack of convergence
RootEstimationException() - Constructor for exception com.irurueta.numerical.roots.RootEstimationException
Constructor.
RootEstimationException(String) - Constructor for exception com.irurueta.numerical.roots.RootEstimationException
Constructor with String containing message.
RootEstimationException(String, Throwable) - Constructor for exception com.irurueta.numerical.roots.RootEstimationException
Constructor with message and cause.
RootEstimationException(Throwable) - Constructor for exception com.irurueta.numerical.roots.RootEstimationException
Constructor with cause.
RootEstimator - Class in com.irurueta.numerical.roots
Abstract class to find roots of functions.
RootEstimator() - Constructor for class com.irurueta.numerical.roots.RootEstimator
Constructor.
roots - Variable in class com.irurueta.numerical.roots.PolynomialRootsEstimator
Array containing estimated roots.
rows - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
Number of rows of matrix to be estimated.
rows - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Number of rows of quadrature result.
rows - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Number of rows of quadrature result.
rows - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Number of rows of quadrature result.

S

s - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Value of the next stage of refinement.
s - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
Value of the next stage of refinement.
s - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Current value of integral.
s - Variable in class com.irurueta.numerical.integration.MidPointQuadrature
Current value of integral.
s - Variable in class com.irurueta.numerical.integration.RombergIntegrator
Successive trapezoidal approximations.
s - Variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
Successive trapezoidal approximations.
s - Variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
Successive trapezoidal approximations.
s - Variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
Successive trapezoidal approximations.
s - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Current value of integral.
s - Variable in class com.irurueta.numerical.integration.TrapezoidalQuadrature
Current value of integral.
SafeNewtonRaphsonSingleRootEstimator - Class in com.irurueta.numerical.roots
Computes a root for a single dimension function inside a given bracket of values, in other words, root will only be searched within provided minimum and maximum evaluation points.
SafeNewtonRaphsonSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
Empty constructor.
SafeNewtonRaphsonSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
Constructor.
SafeNewtonRaphsonSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
Constructor.
sampleAverage - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
Estimated sample average.
sampleCount - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
Number of samples used for estimation.
sampleMatrix - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
A sample expressed in matrix form.
sampleNoMean - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
A sample after removing its mean.
SavitzkyGolayDerivativeEstimator - Class in com.irurueta.numerical
Class to estimate the derivative of a single dimension function at a given point.
SavitzkyGolayDerivativeEstimator(SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.SavitzkyGolayDerivativeEstimator
Constructor.
SavitzkyGolayGradientEstimator - Class in com.irurueta.numerical
Class to estimate the gradient of a multidimensional function.
SavitzkyGolayGradientEstimator(MultiDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.SavitzkyGolayGradientEstimator
Constructor.
SecantSingleRootEstimator - Class in com.irurueta.numerical.roots
Computes a root for a single dimension function inside a given bracket of values, in other words, root will only be searched within provided minimum and maximum evaluation points.
SecantSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.SecantSingleRootEstimator
Empty constructor.
SecantSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.SecantSingleRootEstimator
Constructor.
SecondDegreePolynomialRootsEstimator - Class in com.irurueta.numerical.roots
Class to estimate the roots of a second degree polynomial along with other polynomial properties.
SecondDegreePolynomialRootsEstimator() - Constructor for class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Empty constructor.
SecondDegreePolynomialRootsEstimator(double[]) - Constructor for class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Constructor.
secondDerivative() - Method in class com.irurueta.numerical.polynomials.Polynomial
Replaces this instance by its second derivative.
secondDerivative(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes second derivative of polynomial.
secondDerivativeAndReturnNew() - Method in class com.irurueta.numerical.polynomials.Polynomial
Computes second derivative of polynomial.
selected - Variable in class com.irurueta.numerical.robust.WeightSelection
Array indicating which correspondences have been selected (i.e.
selectedIndices - Variable in class com.irurueta.numerical.robust.FastRandomSubsetSelector
Set containing selected indices on a given run.
selectWeights(double[], boolean, int) - Static method in class com.irurueta.numerical.robust.WeightSelection
Selects correspondences based on provided weights and creates a weight selection instance.
setBeta(double) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Sets beta, which is the probability that a match is declared inlier by mistake, i.e.
setBeta(double) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Sets beta, which is the probability that a match is declared inlier by mistake, i.e.
setBracket(double, double) - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Sets the bracket of values (i.e.
setBracket(double, double, double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Sets a bracket of values to later search for a minimum.
setComputeAndKeepInliersEnabled(boolean) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Specifies whether inliers must be computed and kept.
setComputeAndKeepInliersEnabled(boolean) - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Specifies whether inliers must be computed and kept.
setComputeAndKeepResidualsEnabled(boolean) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Specifies whether residuals must be computed and kept.
setComputeAndKeepResidualsEnabled(boolean) - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Specifies whether residuals must be computed and kept.
setConfidence(double) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Sets amount of confidence expressed as a value between 0.0 and 1.0 (which is equivalent to 100%).
setConfidence(double) - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
setConfidence(double) - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
setConfidence(double) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
setConfidence(double) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
setConfidence(double) - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
setConstant(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Sets constant terms of integral.
setConstants(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Sets constant terms of integral.
setConstantValue(double) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Sets constant value to use during edge extension when CONSTANT_EDGE method is being used.
setControlMatrix(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Sets the control matrix (B) (it is not used if there is no control).
setCovarianceAdjusted(boolean) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Specifies whether covariance must be adjusted or not.
setCovarianceAdjusted(boolean) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Specifies whether covariance must be adjusted or not.
setCovarianceAdjusted(boolean) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Specifies whether covariance must be adjusted or not.
setDegree(int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Sets degree of polynomial to be estimated.
setDegree(int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Sets degree of polynomial to be estimated.
setDegreeAndEvaluations(int, List<PolynomialEvaluation>) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Sets degree of polynomial to be estimated and collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of specified degree.
setDegreeEvaluationsAndWeights(int, List<PolynomialEvaluation>, double[]) - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Sets degree of polynomial to be estimated and collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of specified degree.
setDerivativeListener(SingleDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Sets derivative listener that gets function derivative.
setDerivativeListener(SingleDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
Sets derivative listener to evaluate a function's derivative.
setDerivativeOrder(int) - Method in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
Sets order of derivative.
setEdgeMethod(ConvolverEdgeMethod) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Sets edge extension method to use during convolution when parts of the kernel are required to lie outside the signal's boundaries.
setEndX(double) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Sets end point of interval being integrated.
setErrorCovPost(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Sets the posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k).
setErrorCovPre(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Sets the priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q).
setEta0(double) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Sets eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
setEta0(double) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Sets eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
setEvaluation(double) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
Sets evaluation of polynomial at point x.
setEvaluations(List<PolynomialEvaluation>) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Sets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
setEvaluations(List<PolynomialEvaluation>) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Sets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
setEvaluations(List<PolynomialEvaluation>) - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Sets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
setEvaluationsAndWeights(List<PolynomialEvaluation>, double[]) - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Sets collection of polynomial evaluations along with their corresponding weights.
setFunctionEvaluator(LevenbergMarquardtMultiDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Sets function evaluator to evaluate function at a given point and obtain function derivatives respect to each provided parameter.
setFunctionEvaluator(LevenbergMarquardtMultiVariateFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Sets function evaluator to evaluate function at a given point and obtain function jacobian respect to each provided parameter.
setFunctionEvaluator(LevenbergMarquardtSingleDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Sets function evaluator to evaluate function at a given point and obtain function derivatives respect to each provided parameter
setFunctionEvaluator(LinearFitterMultiDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
Sets function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point
setFunctionEvaluator(LinearFitterSingleDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
Sets function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point.
setFunctionEvaluator(LinearFitterSingleDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Sets function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point.
setGain(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Sets the Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R).
setGaussianSigma(double) - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Sets Gaussian sigma to be used on each sample when aggregating Gaussian functions centered at each input data sample value.
setGeometricDistanceUsed(boolean) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Specifies whether geometric distance will be used to find outliers or algebraic distance will be used instead.
setGradientListener(GradientFunctionEvaluatorListener) - Method in class com.irurueta.numerical.DirectionalDerivativeEvaluator
Sets gradient listener that evaluates a multidimensional function gradient.
setGradientListener(GradientFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Sets gradient listener in charge of obtaining gradient values for the function to be evaluated.
setGradientListener(GradientFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Sets gradient listener.
setGradientListener(GradientFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Sets gradient listener in charge of obtaining gradient values for the function to be evaluated.
setHistogramInitialSolutionUsed(boolean) - Method in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Sets boolean that indicates that an initial coarse solution will be computed first by using an internal HistogramMaximumLikelihoodEstimator in order to initialize the internal BrentSingleOptimizer to obtain a more accurate solution.
setInlierFactor(double) - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Sets factor to normalize or adjust threshold to determine inliers.
setInlierFactor(double) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Sets factor to normalize or adjust threshold to determine inliers.
setInputData(double[]) - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Sets array containing input data to be used to find the most likely value.
setInputData(double[], double[]) - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Sets input data to fit a straight line to.
setInputData(double[], double[], double) - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
Sets required input data to start function fitting and assuming constant standard deviation errors in input data.
setInputData(double[], double[], double[]) - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
Sets required input data to start function fitting.
setInputData(double[], double, double) - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Sets array containing input data to be used to find the most likely value along with the minimum and maximum values assumed to be contained in it.
setInputData(Matrix, double[], double) - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
Sets required input data to start function fitting and assuming constant standard deviation errors in input data
setInputData(Matrix, double[], double[]) - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
Sets required input data to start function fitting
setInputData(Matrix, Matrix, double) - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
Sets required input data to start function fitting and assuming constant standard deviation errors in input data.
setInputData(Matrix, Matrix, double[]) - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
Sets required input data to start function fitting.
setInputDataAndStandardDeviations(double[], double[], double[]) - Method in class com.irurueta.numerical.fitting.StraightLineFitter
Sets input data and standard deviations of input data to fit a straight line to.
setIntegralOrder(int) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Sets integral order.
setIntegralOrder(int) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Sets integral order.
setItmax(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Sets maximum number of iterations.
setItmax(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Sets maximum number of iterations.
setItmax(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Sets maximum number of iterations.
setKernel(double[]) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Sets kernel to convolve the signal with.
setKernelCenter(int) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Sets position of kernel center.
setListener(MultiDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.DirectionalEvaluator
Sets listener to evaluate a multidimensional function.
setListener(MultiDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.MultiOptimizer
Sets listener to evaluate a multidimensional function.
setListener(PolynomialEstimatorListener) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
Sets listener to be notified of events such as when estimation starts, ends or estimation progress changes.
setListener(PolynomialRobustEstimatorListener) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Sets listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
setListener(RobustEstimatorListener<T>) - Method in class com.irurueta.numerical.robust.RobustEstimator
Sets listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
setListener(Convolver1D.Convolver1DListener) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Sets listener in charge of attending events generated by this instance.
setListener(SingleDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.SingleOptimizer
Sets listener.
setListener(SingleDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.roots.SingleRootEstimator
Sets listener that evaluates a single dimension function in order to find its root.
setLMSESolutionAllowed(boolean) - Method in class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
Specified if an LMSE (Least Mean Square Error) solution is allowed if more evaluations than the required minimum are provided.
setMaxEvaluations(int) - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Sets maximum number of evaluations to be weighted and taken into account.
setMaxIterations(int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Sets maximum allowed number of iterations.
setMaxIterations(int) - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Sets maximum allowed number of iterations.
setMaxIterations(int) - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
Sets maximum allowed number of iterations.
setMaxIterations(int) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Sets maximum allowed number of iterations.
setMaxIterations(int) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Sets maximum allowed number of iterations.
setMaxIterations(int) - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
Sets maximum allowed number of iterations.
setMaxOutliersProportion(double) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Sets maximum allowed outliers proportion in the input data.
setMaxOutliersProportion(double) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Sets maximum allowed outliers proportion in the input data.
setMeasurementMatrix(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Sets measurement matrix (H).
setMeasurementNoiseCov(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Sets the measurement noise covariance matrix (R).
setMeasureParameters(int) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Sets the number of measurement vector dimensions (measure parameters).
setMinMaxValues(double, double) - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
Sets minimum and maximum value assumed to be found in input data array.
setNdone(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Sets convergence parameter.
setNdone(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Sets convergence parameter.
setNdone(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Sets convergence parameter.
setNumberOfBins(int) - Method in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
Sets number of bins to be used on the histogram.
setNumSamples(int) - Method in class com.irurueta.numerical.robust.SubsetSelector
Sets number of samples to select subsets from.
setNumSelected(int) - Method in class com.irurueta.numerical.robust.WeightSelection
Sets number of correspondences that have been selected.
setOnIterationCompletedListener(OnIterationCompletedListener) - Method in class com.irurueta.numerical.optimization.Optimizer
Sets listener to handle minimization events.
setPointAndDirection(double[], double[]) - Method in class com.irurueta.numerical.DirectionalEvaluator
Sets point used as a reference to determine the function's input parameters along a line and the direction of the line where the function is evaluated.
setPointAndDirections(double[], Matrix) - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Sets start point and set of directions to start looking for minimum.
setPolishRootsEnabled(boolean) - Method in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
Sets boolean indicating whether roots will be refined after an initial estimation.
setPolynomialParameters(double[]) - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Set array of first degree polynomial parameters.
setPolynomialParameters(double[]) - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Set array of second degree polynomial parameters.
setPolynomialParameters(double[]) - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Set array of third degree polynomial parameters.
setPolynomialParameters(Complex[]) - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
Sets parameters of a polynomial, taking into account that a polynomial of degree n is defined as: p(x) = a0 * x^n + a1 * x^(n - 1) + ...
setPolyParams(double...) - Method in class com.irurueta.numerical.polynomials.Polynomial
Sets array defining parameters of polynomial.
setProcessNoiseCov(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Sets the process noise covariance matrix (Q).
setProgressDelta(float) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Sets amount of progress variation before notifying a progress change during estimation.
setProgressDelta(float) - Method in class com.irurueta.numerical.robust.RobustEstimator
Sets amount of progress variation before notifying a progress change during estimation.
setQualityScores(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Sets quality scores corresponding to each polynomial evaluation.
setQualityScores(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Sets quality scores corresponding to each provided point.
setQualityScores(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Sets quality scores corresponding to each provided point.
setSelected(boolean[]) - Method in class com.irurueta.numerical.robust.WeightSelection
Sets array indicating which correspondences have been selected (i.e.
setSignal(double[]) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
Sets signal to be convolved.
setSimplex(double[], double) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Sets a simplex defined as a central point and a set of surrounding points at distance delta.
setSimplex(double[], double[]) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Sets a simplex defined as a central point and a set of surrounding points at their corresponding distance deltas[i], where "i" corresponds to one position of provided array of distances.
setSimplex(Matrix) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Sets simplex as a matrix containing on each row a point of the simplex.
setSortWeightsEnabled(boolean) - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Specifies whether weights are sorted by so that largest weighted evaluations are used first.
setStartPoint(double[]) - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Sets start point where local minimum is searched nearby.
setStartPoint(double[]) - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Sets start point where local minimum is searched nearby.
setStartPoint(double[]) - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Sets start point where local minimum is searched nearby.
setStartPoint(double[]) - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Sets start point where algorithm will be started.
setStartPointAndDirection(double[], double[]) - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Internal method to set start point and direction to start the search for a local minimum.
setStartPointAndDirection(double[], double[]) - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
Internal method to set start point and direction to start the search for a local minimum.
setStartX(double) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Sets start point of interval being integrated.
setStatePost(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Sets corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k)).
setStatePre(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Sets predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k).
setStopThreshold(double) - Method in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
setStopThreshold(double) - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
setStopThreshold(double) - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
Sets threshold to be used to keep the algorithm iterating in case that best threshold is not small enough.
setStopThresholdEnabled(boolean) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Sets boolean indicating whether the algorithm must stop prematurely when dynamically computed threshold using median of residuals has a value lower than provided threshold in listener.
setThreshold(double) - Method in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
setThreshold(double) - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
setThreshold(double) - Method in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
setTol(double) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Sets tolerance to reach convergence.
setTol(double) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Sets tolerance to reach convergence.
setTol(double) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Sets tolerance to reach convergence.
setTol(double) - Method in class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
Sets tolerance to define convergence threshold for SVD.
setTol(double) - Method in class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
Sets tolerance to define convergence threshold for SVD.
setTolerance(double) - Method in class com.irurueta.numerical.optimization.BrentSingleOptimizer
Sets algorithm's tolerance.
setTolerance(double) - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Sets tolerance or accuracy to be expected on estimated local minimum.
setTolerance(double) - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Sets tolerance value.
setTolerance(double) - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Sets tolerance or accuracy to be expected on estimated local minimum.
setTolerance(double) - Method in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
Sets algorithm's tolerance.
setTolerance(double) - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Sets tolerance or accuracy to be expected on estimated local minimum.
setTolerance(double) - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Sets tolerance or accuracy to be expected on estimated local minimum.
setTolerance(double) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Sets tolerance or accuracy to be expected on estimated local minimum.
setTolerance(double) - Method in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
Sets tolerance to find a root.
setTolerance(double) - Method in class com.irurueta.numerical.roots.BrentSingleRootEstimator
Sets tolerance value.
setTolerance(double) - Method in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
Sets tolerance to find a root.
setTolerance(double) - Method in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
Sets tolerance value.
setTolerance(double) - Method in class com.irurueta.numerical.roots.RidderSingleRootEstimator
Sets tolerance value.
setTolerance(double) - Method in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
Sets tolerance value.
setTolerance(double) - Method in class com.irurueta.numerical.roots.SecantSingleRootEstimator
Sets tolerance value.
setTransitionMatrix(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
Sets the state transition matrix (A).
setUseInlierThresholds(boolean) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Sets flag indicating whether thresholds to determine inliers are used, or if only median of residuals is used.
setUsePolakRibiere(boolean) - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Sets boolean indicating whether Polak-Ribiere method or Fletcher-Reeves method is used.
setUsePolakRibiere(boolean) - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Sets boolean indicating whether Polak-Ribiere method or Fletcher-Reeves method is used.
setX(double) - Method in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
Sets point where polynomial derivative has been evaluated.
setX(double) - Method in class com.irurueta.numerical.polynomials.estimators.DirectPolynomialEvaluation
Sets point where polynomial has been evaluated.
setX(double) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Sets point where nth-polynomial integral has been evaluated.
setY2(double[], double[], double, double) - Method in class com.irurueta.numerical.interpolation.CubicSplineInterpolator
This method stores an array y2[0..n-1] with second derivatives of the interpolating function at the tabulated points pointed to by xv, using function values pointed to by yv.
ShepardInterpolator - Class in com.irurueta.numerical.interpolation
Interpolates sparsely defined points of dimension "dim" using Shepard interpolation, which is a simplification of Radial Basis Function interpolation that achieves less accurate results but having less computational cost.
ShepardInterpolator(Matrix, double[]) - Constructor for class com.irurueta.numerical.interpolation.ShepardInterpolator
Constructor using default p parameter, which is equal to 2.0.
ShepardInterpolator(Matrix, double[], double) - Constructor for class com.irurueta.numerical.interpolation.ShepardInterpolator
Constructor.
shift2(double[], double[], double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Pushes "b" value into "a", and "c" value into "b".
shift3(double[], double[], double[], double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Pushes "b" value into "a", and "c" value into "b" and "d" value into "c".
sig - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
Standard deviations of each pair of points (x, y).
sig - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
Standard deviations of each pair of points (x, y).
sig - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
Standard deviations of each pair of points (x,y).
sig - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
Standard deviations of each pair of points (x,y).
siga - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
Estimated standard deviation of parameter "a".
sigb - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
Estimated standard deviation of parameter "b".
sigdat - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
Estimated standard deviation of provided input data.
sign(double, double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Internal method to determine whether a and b have the same sign.
sign(double, double) - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Internal method to determine whether a and b have the same sign.
signal - Variable in class com.irurueta.numerical.signal.processing.Convolver1D
Signal to be convolved.
SignalProcessingException - Exception in com.irurueta.numerical.signal.processing
Raised when something fails during signal processing.
SignalProcessingException() - Constructor for exception com.irurueta.numerical.signal.processing.SignalProcessingException
Constructor.
SignalProcessingException(String) - Constructor for exception com.irurueta.numerical.signal.processing.SignalProcessingException
Constructor with String containing message.
SignalProcessingException(String, Throwable) - Constructor for exception com.irurueta.numerical.signal.processing.SignalProcessingException
Constructor with message and cause.
SignalProcessingException(Throwable) - Constructor for exception com.irurueta.numerical.signal.processing.SignalProcessingException
Constructor with cause.
SimpleInterpolatingPolynomialEstimator - Class in com.irurueta.numerical.interpolation
Estimates coefficients of a polynomial passing through provided set of x and y points.
SimpleInterpolatingPolynomialEstimator() - Constructor for class com.irurueta.numerical.interpolation.SimpleInterpolatingPolynomialEstimator
 
SimpleSingleDimensionLinearFitter - Class in com.irurueta.numerical.fitting
Fits provided data (x,y) to a function made of a linear combination of functions used as a basis (i.e.
SimpleSingleDimensionLinearFitter() - Constructor for class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
Constructor.
SimpleSingleDimensionLinearFitter(double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
Constructor.
SimpleSingleDimensionLinearFitter(double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
Constructor.
SimpleSingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
Constructor.
SimpleSingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator, double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
Constructor.
SimpleSingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator, double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
Constructor.
SimplexMultiOptimizer - Class in com.irurueta.numerical.optimization
This class searches for a multi dimension function local minimum.
SimplexMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Empty constructor.
SimplexMultiOptimizer(MultiDimensionFunctionEvaluatorListener, double[], double[], double) - Constructor for class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Constructor.
SimplexMultiOptimizer(MultiDimensionFunctionEvaluatorListener, double[], double, double) - Constructor for class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Constructor.
SimplexMultiOptimizer(MultiDimensionFunctionEvaluatorListener, Matrix, double) - Constructor for class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Constructor.
SIMPSON - Enum constant in enum class com.irurueta.numerical.integration.IntegratorType
Simpson integrator.
SimpsonDoubleExponentialRuleQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Simpson's method and double exponential quadrature.
SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
Constructor with default accuracy.
SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
Constructor.
SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
Constructor with default accuracy.
SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
Constructor.
SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
Constructor with default accuracy and default maximum step size.
SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
Constructor with default maximum step size.
SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
Constructor with default accuracy and default maximum step size.
SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
Constructor.
SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Simpson's method and double exponential quadrature.
SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default accuracy.
SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor.
SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default accuracy.
SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor.
SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default accuracy and default maximum step size.
SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default maximum step size.
SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor with default accuracy and default maximum step size.
SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
Constructor.
SimpsonInfinityMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Simpson's rule and infinity mid-point quadrature.
SimpsonInfinityMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonInfinityMidPointQuadratureIntegrator
Constructor.
SimpsonInfinityMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonInfinityMidPointQuadratureIntegrator
Constructor.
SimpsonInfinityMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Simpson's rule and infinity mid-point quadrature.
SimpsonInfinityMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonInfinityMidPointQuadratureMatrixIntegrator
Constructor with default accuracy.
SimpsonInfinityMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonInfinityMidPointQuadratureMatrixIntegrator
Constructor.
SimpsonIntegrator<T extends Quadrature> - Class in com.irurueta.numerical.integration
Base integrator for implementations based on Simpson's method.
SimpsonIntegrator(T, double) - Constructor for class com.irurueta.numerical.integration.SimpsonIntegrator
Constructor.
SimpsonLowerSquareRootMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Simpson's rule and Lower Square Root mid-point quadrature when lower integration bound lies at a function singularity.
SimpsonLowerSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonLowerSquareRootMidPointQuadratureIntegrator
Constructor.
SimpsonLowerSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonLowerSquareRootMidPointQuadratureIntegrator
Constructor.
SimpsonLowerSquareRootMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Simpson's rule and Lower Square Root mid-point quadrature when lower integration bound lies at a function singularity.
SimpsonLowerSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonLowerSquareRootMidPointQuadratureMatrixIntegrator
Constructor with default accuracy.
SimpsonLowerSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonLowerSquareRootMidPointQuadratureMatrixIntegrator
Constructor.
SimpsonMatrixIntegrator<T extends MatrixQuadrature> - Class in com.irurueta.numerical.integration
Base integrator for implementations based on Simpson's method.
SimpsonMatrixIntegrator(T, double) - Constructor for class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
Constructor.
SimpsonMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Simpson's rule and mid-point quadrature.
SimpsonMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonMidPointQuadratureIntegrator
Constructor.
SimpsonMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonMidPointQuadratureIntegrator
Constructor.
SimpsonMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Simpson's rule and mid-point quadrature.
SimpsonMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonMidPointQuadratureMatrixIntegrator
Constructor with default accuracy.
SimpsonMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonMidPointQuadratureMatrixIntegrator
Constructor.
SimpsonTrapezoidalQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Simpson's rule and trapezoidal quadrature.
SimpsonTrapezoidalQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonTrapezoidalQuadratureIntegrator
Constructor with default accuracy.
SimpsonTrapezoidalQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonTrapezoidalQuadratureIntegrator
Constructor.
SimpsonTrapezoidalQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes matrix function integration by using Simpson's rule and trapezoidal quadrature.
SimpsonTrapezoidalQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonTrapezoidalQuadratureMatrixIntegrator
Constructor with default accuracy.
SimpsonTrapezoidalQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonTrapezoidalQuadratureMatrixIntegrator
Constructor.
SimpsonUpperSquareRootMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Simpson's rule an Upper Square Root mid-point quadrature when upper integration bound lies at a function singularity.
SimpsonUpperSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonUpperSquareRootMidPointQuadratureIntegrator
Constructor.
SimpsonUpperSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonUpperSquareRootMidPointQuadratureIntegrator
Constructor.
SimpsonUpperSquareRootMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Simpson's rule an Upper Square Root mid-point quadrature when upper integration bound lies at a function singularity.
SimpsonUpperSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonUpperSquareRootMidPointQuadratureMatrixIntegrator
Constructor with default accuracy.
SimpsonUpperSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonUpperSquareRootMidPointQuadratureMatrixIntegrator
Constructor.
singleCov - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
A covariance matrix for a single sample.
SingleDimensionFitter - Class in com.irurueta.numerical.fitting
Base class to fit a single dimension function y = f(x) by using provided data (x, y)
SingleDimensionFitter() - Constructor for class com.irurueta.numerical.fitting.SingleDimensionFitter
Constructor.
SingleDimensionFitter(double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionFitter
Constructor.
SingleDimensionFitter(double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionFitter
Constructor.
SingleDimensionFunctionEvaluatorListener - Interface in com.irurueta.numerical
Interface to define how single dimension functions can be evaluated.
SingleDimensionLinearFitter - Class in com.irurueta.numerical.fitting
Base class to fit provided data (x,y) to a function made of a linear combination of functions used as a basis (i.e.
SingleDimensionLinearFitter() - Constructor for class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Constructor.
SingleDimensionLinearFitter(double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Constructor.
SingleDimensionLinearFitter(double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Constructor.
SingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Constructor.
SingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator, double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Constructor.
SingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator, double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
Constructor.
SingleOptimizer - Class in com.irurueta.numerical.optimization
Abstract class to find minima on single dimension functions.
SingleOptimizer() - Constructor for class com.irurueta.numerical.optimization.SingleOptimizer
Empty constructor.
SingleOptimizer(SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.optimization.SingleOptimizer
Constructor with listener.
SingleRootEstimator - Class in com.irurueta.numerical.roots
Abstract class to find roots of single dimension functions.
SingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.SingleRootEstimator
Empty constructor.
SingleRootEstimator(SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.roots.SingleRootEstimator
Constructor.
solveCubic(double, double, double, double, Complex, Complex, Complex) - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Finds 3rd degree polynomial roots
solveLinear(double, double) - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Internal method to estimate a root on a first degree polynomial.
solveQuadratic(double, double, double, Complex, Complex) - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Finds 2nd degree polynomial roots
sortWeights - Variable in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Indicates if weights are sorted by default so that largest weighted evaluations are used first.
sqr(double) - Static method in class com.irurueta.numerical.interpolation.KrigingInterpolator
Computes squared value.
sqr(double) - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Computes the squared value of provided double.
sqr(double) - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Computes the squared value of provided double.
srp - Variable in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
Array of one dimensional cubic spline interpolators.
srp - Variable in class com.irurueta.numerical.interpolation.CurveInterpolator
Array of one dimensional cubic spline interpolators.
standardDeviation - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
Standard deviation of error among all provided samples respect to currently estimated result.
standardDeviation - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Standard deviation of error among all provided samples respect to currently estimated result.
startX - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
Start point of interval being integrated.
statePost - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
statePre - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
STD_CONSTANT - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Constant to estimate standard deviation of residuals based on their median.
STD_CONSTANT - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Constant to estimate standard deviation of residuals based on their median.
stopThreshold - Variable in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
Threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
stopThreshold - Variable in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
Threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
stopThreshold - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Threshold to be used to keep the algorithm iterating in case that best threshold is not small enough.
stopThresholdEnabled - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Indicates whether the algorithm must stop prematurely when dynamically computed threshold using median of residuals has a value lower than provided threshold in listener.
STPMX - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Scaled maximum step length allowed in line searches.
StraightLineFitter - Class in com.irurueta.numerical.fitting
Fits provided data (x,y) to a straight line following equation y = a + b*x, estimates parameters a and b their variances, covariance and their chi square value.
StraightLineFitter() - Constructor for class com.irurueta.numerical.fitting.StraightLineFitter
Constructor.
StraightLineFitter(double[], double[]) - Constructor for class com.irurueta.numerical.fitting.StraightLineFitter
Constructor.
StraightLineFitter(double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.StraightLineFitter
Constructor.
subsetSelector - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
Instance in charge of picking random subsets of samples.
subsetSelector - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
Instance in charge of picking random subsets of samples.
subsetSelector - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Instance in charge of picking random subsets of samples.
subsetSelector - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
Instance in charge of picking random subsets of samples.
subsetSelector - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
Instance in charge of picking random subsets of samples.
SubsetSelector - Class in com.irurueta.numerical.robust
Base class to pick subsets of samples.
SubsetSelector(int) - Constructor for class com.irurueta.numerical.robust.SubsetSelector
Constructor.
SubsetSelectorException - Exception in com.irurueta.numerical.robust
Raised if subset selection of samples fails.
SubsetSelectorException() - Constructor for exception com.irurueta.numerical.robust.SubsetSelectorException
Constructor.
SubsetSelectorException(String) - Constructor for exception com.irurueta.numerical.robust.SubsetSelectorException
Constructor with String containing message.
SubsetSelectorException(String, Throwable) - Constructor for exception com.irurueta.numerical.robust.SubsetSelectorException
Constructor with message and cause.
SubsetSelectorException(Throwable) - Constructor for exception com.irurueta.numerical.robust.SubsetSelectorException
Constructor with cause.
SubsetSelectorType - Enum Class in com.irurueta.numerical.robust
Enumerator containing supported types of subset selectors to pick random samples for robust estimators.
SubsetSelectorType() - Constructor for enum class com.irurueta.numerical.robust.SubsetSelectorType
 
subtract(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Subtracts another polynomial form this one.
subtract(Polynomial, Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Subtract other polynomial from this one and stores the result into provided instance.
subtractAndReturnNew(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Subtract other polynomial from this one and returns a new polynomial as a result.
sum - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Temporary value storing summation of evaluations.
sum - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Temporary value storing summation of evaluations.
sum - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Temporary value storing summation of evaluations.
SvdMultiDimensionLinearFitter - Class in com.irurueta.numerical.fitting
Fits provided data (x,y) to a function made of a linear combination of functions used as a basis (i.e.
SvdMultiDimensionLinearFitter() - Constructor for class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
Constructor.
SvdMultiDimensionLinearFitter(Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
Constructor.
SvdMultiDimensionLinearFitter(Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
Constructor.
SvdMultiDimensionLinearFitter(LinearFitterMultiDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
Constructor.
SvdMultiDimensionLinearFitter(LinearFitterMultiDimensionFunctionEvaluator, Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
Constructor.
SvdMultiDimensionLinearFitter(LinearFitterMultiDimensionFunctionEvaluator, Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
Constructor.
SvdSingleDimensionLinearFitter - Class in com.irurueta.numerical.fitting
Fits provided data (x,y) to a function made of a linear combination of functions used as a basis (i.e.
SvdSingleDimensionLinearFitter() - Constructor for class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
Constructor.
SvdSingleDimensionLinearFitter(double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
Constructor.
SvdSingleDimensionLinearFitter(double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
Constructor.
SvdSingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
Constructor.
SvdSingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator, double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
Constructor.
SvdSingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator, double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
Constructor.
swap(double[], double[]) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Internal method to swap two values.
swap(double[], double[]) - Static method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Swaps a and b values.
swap(double[], double[]) - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
Internal method to swap two values.
swap(double[], double[], int, int) - Static method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Swaps values of arrays at provided positions.
swap(double[], double[], int, int) - Static method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Swaps values of arrays at provided positions.
swap(double[], double[], int, int) - Static method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Swaps values of arrays at provided positions.
swap(double[], double[], int, int) - Static method in class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
Swaps values of arrays at provided positions.
SymmetricDerivativeEstimator - Class in com.irurueta.numerical
Class to estimate the derivative of a single dimension function at a given point.
SymmetricDerivativeEstimator(SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.SymmetricDerivativeEstimator
Constructor.
SymmetricGradientEstimator - Class in com.irurueta.numerical
Class to estimate the gradient of a multidimensional function.
SymmetricGradientEstimator(MultiDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.SymmetricGradientEstimator
Constructor.

T

temp1 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Temporary matrix 1.
temp2 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Temporary matrix 2.
temp3 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Temporary matrix 3.
temp4 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Temporary matrix 4.
temp5 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Temporary matrix 5.
temp6 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Temporary matrix 6.
temp7 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Temporary matrix 7.
temp8 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
Temporary matrix 8.
ThinPlateRadialBasisFunction - Class in com.irurueta.numerical.interpolation
Thin-plate spline Radial Basis Function implementation.
ThinPlateRadialBasisFunction() - Constructor for class com.irurueta.numerical.interpolation.ThinPlateRadialBasisFunction
Constructor.
ThinPlateRadialBasisFunction(double) - Constructor for class com.irurueta.numerical.interpolation.ThinPlateRadialBasisFunction
Constructor.
THIRD - Static variable in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Constant defining one third.
ThirdDegreePolynomialRootsEstimator - Class in com.irurueta.numerical.roots
Class to estimate the roots of a third degree polynomial along with other polynomial properties.
ThirdDegreePolynomialRootsEstimator() - Constructor for class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Empty constructor.
ThirdDegreePolynomialRootsEstimator(double[]) - Constructor for class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Constructor.
threshold - Variable in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
Threshold to determine whether polynomial evaluations are inliers or not when testing possible estimation solutions
threshold - Variable in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
Threshold to determine whether polynomial evaluations are inlers or not when testing possible estimation solutions
threshold - Variable in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
Threshold to determine whether polynomial evaluations are inliers or not when testing possible estimation solutions
TIMESTAMP_FORMAT - Static variable in class com.irurueta.numerical.BuildInfo
Format for build timestamp.
TINY - Static variable in class com.irurueta.numerical.interpolation.RationalInterpolator
A small number.
TINY - Static variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
Small value representing machine precision.
TINY - Static variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
A small number.
TINY - Static variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Small value considered to be machine precision.
tmp - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
Internal matrix reused for efficiency while provided input matrices keep the same size.
tmpA - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Temporary value storing evaluation at lower bound.
tmpA - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Temporary value storing evaluation at point "a".
tmpB - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Temporary value storing evaluation at upper bound.
tmpB - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Temporary value storing evaluation at point "b".
tmpMid - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Temporary value storing evaluation at mid-point.
tmpMid - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Temporary value storing evaluation at mid-point.
tmpX - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
Temporary value storing evaluation at point x.
tmpX - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
Temporary value storing evaluation at point x.
tmpX - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Temporary value storing evaluation at point x.
tol - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
Tolerance to reach convergence.
tol - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Tolerance to reach convergence.
tol - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
Tolerance to reach convergence.
tol - Variable in class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
Tolerance to define convergence threshold for SVD.
tol - Variable in class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
Tolerance to define convergence threshold for SVD.
tolerance - Variable in class com.irurueta.numerical.optimization.BrentSingleOptimizer
Tolerance value.
tolerance - Variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
The fractional tolerance in the function value such that failure to decrease by more than this amount on one iteration signals done-ness.
tolerance - Variable in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Tolerance.
tolerance - Variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
The fractional tolerance in the function value such that failure to decrease by more than this amount on one iteration signals done-ness.
tolerance - Variable in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
Tolerance value.
tolerance - Variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
The fractional tolerance in the function value such that failure to decrease by more than this amount on one iteration signals doneness.
tolerance - Variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
The fractional tolerance in the function value such that failure to decrease by more than this amount on one iteration signals done-ness.
tolerance - Variable in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
Tolerance to find a root.
tolerance - Variable in class com.irurueta.numerical.roots.BrentSingleRootEstimator
Tolerance value.
tolerance - Variable in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
Tolerance to find a root.
tolerance - Variable in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
Tolerance value.
tolerance - Variable in class com.irurueta.numerical.roots.RidderSingleRootEstimator
Tolerance value.
tolerance - Variable in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
Tolerance value.
tolerance - Variable in class com.irurueta.numerical.roots.SecantSingleRootEstimator
Tolerance value.
TOLERANCE - Static variable in class com.irurueta.numerical.ExponentialMatrixEstimator
Default error tolerance of estimated result element-wise.
TOLX - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
Convergence criterion on x values.
TOLX2 - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
 
transformIndices(int[], int[], int[]) - Static method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Transforms indices picked by the subset selector into the indices where samples are actually localed by taking into account their original position before sorting quality scores.
transformIndices(int[], int[], int[]) - Static method in class com.irurueta.numerical.robust.PROSACRobustEstimator
Transforms indices picked by the subset selector into the indices where samples are actually localed by taking into account their original position before sorting quality scores.
transitionMatrix - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
State transition matrix (A).
transposedSampleMatrix - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
The transposed sample matrix.
TRAPEZOIDAL - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
Trapezoidal quadrature.
TrapezoidalMatrixQuadrature - Class in com.irurueta.numerical.integration
Implementation of matrix quadrature using trapezoidal algorithm.
TrapezoidalMatrixQuadrature(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
Constructor.
TrapezoidalQuadrature - Class in com.irurueta.numerical.integration
Implementation of quadrature using trapezoidal algorithm.
TrapezoidalQuadrature(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.TrapezoidalQuadrature
Constructor.
TrapezoidalQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using Trapezoidal quadrature up to desired accuracy.
TrapezoidalQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.TrapezoidalQuadratureIntegrator
Constructor with default accuracy.
TrapezoidalQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.TrapezoidalQuadratureIntegrator
Constructor.
TrapezoidalQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes single dimension matrix (multivariate) function integration by using Trapezoidal quadrature up to desired accuracy.
TrapezoidalQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.TrapezoidalQuadratureMatrixIntegrator
Constructor with default accuracy.
TrapezoidalQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.TrapezoidalQuadratureMatrixIntegrator
Constructor.
trim() - Method in class com.irurueta.numerical.polynomials.Polynomial
Trims this polynomial to remove all terms above degree that can be neglected.
trim(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
Trims polynomial to remove all terms above degree that can be neglected.
trimAndReturnNew() - Method in class com.irurueta.numerical.polynomials.Polynomial
Trims this polynomial to remove all terms above degree that can be neglected and returns the result as a new polynomial.

U

update(double[]) - Method in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
Updates currently estimated covariance matrix by adding provided sample data.
update(double, double, boolean, double[], int, double, double, boolean) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
Updates data contained in this instance.
update(double, double, BitSet, double[], int, double, boolean) - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
Updates data contained in this instance.
update(double, BitSet, double[], int, boolean) - Method in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
Updates data contained in this instance.
update(BitSet, double[], int) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator.PROSACInliersData
Updates data contained in this instance.
update(BitSet, double[], int) - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator.RANSACInliersData
Updates data contained in this instance.
UPPER_SQUARE_ROOT_MID_POINT - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
Upper square root mid-point.
UpperSquareRootMidPointMatrixQuadrature - Class in com.irurueta.numerical.integration
This is an exact replacement for MidPointMatrixQuadrature, except that it allows for an inverse square-root singularity in the integrand at the upper limit b.
UpperSquareRootMidPointMatrixQuadrature(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.UpperSquareRootMidPointMatrixQuadrature
Constructor.
UpperSquareRootMidPointQuadrature - Class in com.irurueta.numerical.integration
This is an exact replacement for MidPointQuadrature, except that it allows for an inverse square-root singularity in the integrand at the upper limit b.
UpperSquareRootMidPointQuadrature(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadrature
Constructor.
UpperSquareRootMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using an Upper Square Root mid-point quadrature when upper integration bound lies at a function singularity.
UpperSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadratureIntegrator
Constructor.
UpperSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadratureIntegrator
Constructor.
UpperSquareRootMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
Computes function integration by using an Upper Square Root mid-point quadrature when upper integration bound lies at a function singularity.
UpperSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadratureMatrixIntegrator
Constructor.
UpperSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadratureMatrixIntegrator
Constructor.
useGeometricDistance - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
Indicates whether geometric distance will be used to find outliers or algebraic distance will be used instead.
useHistogramInitialSolution - Variable in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
Boolean that indicates that an initial coarse solution will be computed first by using an internal HistogramMaximumLikelihoodEstimator in order to initialize the internal BrentSingleOptimizer to obtain a more accurate solution.
useInlierThresholds - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
Flag indicating whether thresholds to determine inliers are used, or if only median of residuals is used.
usePolakRibiere - Variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
Boolean indicating whether Polak-Ribiere method is used if true, otherwise Fletcher-Reeves will be used.
usePolakRibiere - Variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
Boolean indicating whether Polak-Ribiere method is used if true, otherwise Fletcher-Reeves will be used.

V

VALID_POLY_PARAMS_LENGTH - Static variable in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
Number of parameters valid for a first degree polynomial.
VALID_POLY_PARAMS_LENGTH - Static variable in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
Number of parameters valid for a second degree polynomial.
VALID_POLY_PARAMS_LENGTH - Static variable in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
Number of parameters valid for a third degree polynomial.
vals - Variable in class com.irurueta.numerical.interpolation.ShepardInterpolator
Values of function at provided points.
valueOf(String) - Static method in enum class com.irurueta.numerical.integration.IntegratorType
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class com.irurueta.numerical.integration.QuadratureType
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class com.irurueta.numerical.MaximumLikelihoodEstimatorMethod
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorType
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class com.irurueta.numerical.robust.SubsetSelectorType
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
Returns the enum constant of this class with the specified name.
values() - Static method in enum class com.irurueta.numerical.integration.IntegratorType
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class com.irurueta.numerical.integration.QuadratureType
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class com.irurueta.numerical.MaximumLikelihoodEstimatorMethod
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorType
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class com.irurueta.numerical.robust.SubsetSelectorType
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
Returns an array containing the constants of this enum class, in the order they are declared.
Variogram(Matrix, double[]) - Constructor for class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
Constructor using default beta = 1.5 and zero offset.
Variogram(Matrix, double[], double) - Constructor for class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
Constructor using default zero offset.
Variogram(Matrix, double[], double, double) - Constructor for class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
Constructor.
version - Variable in class com.irurueta.numerical.BuildInfo
Version of this library.
VERSION_KEY - Static variable in class com.irurueta.numerical.BuildInfo
Key to obtain version of this library from properties file.
vgram - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
Variogram of provided data.
vi - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
LU decomposer.
vstar - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
 

W

w - Variable in class com.irurueta.numerical.interpolation.BarycentricRationalInterpolator
Weights for barycentric rational interpolation.
w - Variable in class com.irurueta.numerical.interpolation.RadialBasisFunctionInterpolator
Computed weights to compute interpolation from provided points.
WEIGHTED_POLYNOMIAL_ESTIMATOR - Enum constant in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorType
Polynomial estimator using weighted evaluations.
WeightedPolynomialEstimator - Class in com.irurueta.numerical.polynomials.estimators
This class implements a polynomial estimator using weighted evaluations.
WeightedPolynomialEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Constructor.
WeightedPolynomialEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Constructor.
WeightedPolynomialEstimator(int, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Constructor.
WeightedPolynomialEstimator(int, List<PolynomialEvaluation>, double[]) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Constructor.
WeightedPolynomialEstimator(int, List<PolynomialEvaluation>, double[], PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Constructor.
WeightedPolynomialEstimator(PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Constructor.
WeightedPolynomialEstimator(List<PolynomialEvaluation>, double[]) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Constructor.
WeightedPolynomialEstimator(List<PolynomialEvaluation>, double[], PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Constructor.
weights - Variable in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
Array containing weights for all evaluations.
WeightSelection - Class in com.irurueta.numerical.robust
Class containing the selection that was made on a weighted algorithm.
WeightSelection() - Constructor for class com.irurueta.numerical.robust.WeightSelection
Constructor.

X

x - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
Internal matrix reused for efficiency while provided input matrices keep the same size.
x - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
Input points x where a multidimensional function f(x1, x2, ...) is evaluated where each column of the matrix represents each dimension of the point and each row is related to each sample corresponding to provided y pairs of values
x - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
Input points x where a multidimensional function f(x1, x2, ...) is evaluated where each column of the matrix represents each dimension of the point and each row is related to each sample corresponding to provided y pairs of values.
x - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
Input points x where function f(x) is evaluated.
x - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
Array containing x coordinates of input data to be fitted to a straight line.
x - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
Data to compute interpolations from.
x - Variable in class com.irurueta.numerical.PadeApproximantEstimator
Contains intermediate solution for denominator coefficients.
x - Variable in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
Point where derivative of a given order has been evaluated.
x - Variable in class com.irurueta.numerical.polynomials.estimators.DirectPolynomialEvaluation
Point where polynomial has been evaluated.
x - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
Point where integral of a given order has been evaluated.
x1 - Variable in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
Array of x1v.
x1terp - Variable in class com.irurueta.numerical.interpolation.BilinearInterpolator
One dimensional interpolator for x1v.
x1terp - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
One dimensional interpolator for x1v.
x2terp - Variable in class com.irurueta.numerical.interpolation.BilinearInterpolator
One dimensional interpolator for x2v.
x2terp - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
One dimensional interpolator for x2v.
xh - Variable in class com.irurueta.numerical.GradientEstimator
Internal array to hold input parameter's values.
xh - Variable in class com.irurueta.numerical.JacobianEstimator
Internal array to hold input parameter's values.
xh1 - Variable in class com.irurueta.numerical.SymmetricGradientEstimator
Internal array containing one point to sample close to the original one.
xh2 - Variable in class com.irurueta.numerical.SymmetricGradientEstimator
Internal array containing one point to sample close to the original one.
xi - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
Values of i-th point.
xi - Variable in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
Direction to make the search.
xi - Variable in class com.irurueta.numerical.optimization.LineMultiOptimizer
Direction to make the search.
ximat - Variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
Set of directions.
xmin - Variable in class com.irurueta.numerical.optimization.MultiOptimizer
Minimum that was estimated.
xmin - Variable in class com.irurueta.numerical.optimization.SingleOptimizer
Value where minimum has been found.
xRow - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
An input point to be evaluated.
xRow - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
An input point to be evaluated.
xx - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
X values to be used for interpolation estimation.

Y

y - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
Result of evaluation of multidimensional function f(x1, x2, ...) at provided x points.
y - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
Result of evaluation of multi variate function f(x1, x2, ...) at provided x points.
y - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
Result of evaluation of linear single dimensional function f(x) at provided x points.
y - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
Array containing y coordinates of input data to be fitted to a straight line.
y - Variable in class com.irurueta.numerical.interpolation.BilinearInterpolator
Matrix of tabulated function values yij.
y - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Matrix of tabulated function values yij.
y - Variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
Function values at the vertices of the simples.
y - Variable in class com.irurueta.numerical.PadeApproximantEstimator
Contains intermediate solution for numerator coefficients.
y2 - Variable in class com.irurueta.numerical.interpolation.CubicSplineInterpolator
 
ymod - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
Results of function evaluations.
YP1 - Static variable in class com.irurueta.numerical.interpolation.CubicSplineInterpolator
 
YPN - Static variable in class com.irurueta.numerical.interpolation.CubicSplineInterpolator
 
yv - Variable in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
Array of x2v.
yv - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
Temporary array containing interpolated values in one direction.
yvi - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
 
yy - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
Y values to be used for interpolation estimation.

Z

ZEPS - Static variable in class com.irurueta.numerical.optimization.BrentSingleOptimizer
Small number that protects against trying to achieve fractional accuracy for a minimum that happens to be exactly zero.
ZEPS - Static variable in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
Constant defining machine precision.
ZERO_EDGE - Enum constant in enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
When convolution kernel reaches edge of signal being convoluted, it is assumed that the signal value is zero.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form