Index
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form
A
- a - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Estimated parameters of linear single dimensional function
- a - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Estimated parameters of linear single dimensional function.
- a - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Estimated parameters of single dimensional function.
- a - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
-
Estimated "a" parameter of line following equation y = a + b*x
- a - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Lower limit of integration.
- a - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
-
Lower limit of integration.
- a - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Lower limit of integration.
- a - Variable in class com.irurueta.numerical.integration.MidPointQuadrature
-
Lower limit of integration.
- a - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Lower limit of integration.
- a - Variable in class com.irurueta.numerical.integration.TrapezoidalQuadrature
-
Lower limit of integration.
- ACCURATE_MAXIMUM_LIKELIHOOD_ESTIMATOR - Enum constant in enum class com.irurueta.numerical.MaximumLikelihoodEstimatorMethod
-
MLE method that refines the histogram method by using Gaussian interpolation.
- AccurateInterpolatingPolynomialEstimator - Class in com.irurueta.numerical.interpolation
-
Estimates coefficients of a polynomial passing through provided set of x and y points.
- AccurateInterpolatingPolynomialEstimator() - Constructor for class com.irurueta.numerical.interpolation.AccurateInterpolatingPolynomialEstimator
- AccurateMaximumLikelihoodEstimator - Class in com.irurueta.numerical
-
Class to estimate the most likely value from a series of samples assumed to be normally distributed.
- AccurateMaximumLikelihoodEstimator() - Constructor for class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Empty constructor.
- AccurateMaximumLikelihoodEstimator(double[], double, boolean) - Constructor for class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Constructor
- AccurateMaximumLikelihoodEstimator(double, boolean) - Constructor for class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Constructor.
- AccurateMaximumLikelihoodEstimator(double, double, double[], double, boolean) - Constructor for class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Constructor.
- AccurateMaximumLikelihoodEstimator.EvaluatorListener - Class in com.irurueta.numerical
-
Internal class used by the BrentSingleOptimizer in order to evaluate the aggregation of Gaussians for all the samples in input data array with a high degree of precision.
- add(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Adds another polynomial to this polynomial.
- add(Polynomial, Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Adds this polynomial to another one and stores the result into provided instance.
- addAndReturnNew(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Adds this polynomial to another one and returns a new polynomial as a result.
- adjustCovariance - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Indicates whether covariance must be adjusted or not.
- adjustCovariance - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Indicates whether covariance must be adjusted or not.
- adjustCovariance - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Indicates whether covariance must be adjusted or not.
- adjustCovariance() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Adjusts covariance.
- adjustCovariance() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Adjusts covariance.
- adjustCovariance() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Adjusts covariance.
- afunc - Variable in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Array where results of function evaluations are stored
- afunc - Variable in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Array where results of function evaluations are stored.
- ALF - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
- allowLMSESolution - Variable in class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Indicates if an LMSE (Least Mean Square Error) solution is allowed if more evaluations than the required minimum are provided.
- alph - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
-
Estimated alpha of variogram.
- alpha - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Curvature matrix.
- alpha - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Curvature matrix.
- alpha - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Curvature matrix.
- amotry(Matrix, double[], double[], int, double, MultiDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Internal method to move simplex around.
- ans - Variable in class com.irurueta.numerical.interpolation.CurveInterpolator
-
Result of interpolation.
- aOrig - Variable in class com.irurueta.numerical.integration.LowerSquareRootMidPointMatrixQuadrature
-
Original lower bound of integration.
- aOrig - Variable in class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadrature
-
Original lower bound of integration.
- areBracketEvaluationsAvailable() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Returns boolean indicating whether bracket evaluations are available for retrieval.
- areDirectionsAvailable() - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Returns boolean indicating whether set of directions is available for retrieval.
- areFunctionEvaluationsAvailable() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Returns boolean indicating whether function evaluations at simplex vertices are available for retrieval.
- areMinMaxAvailable - Variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Boolean indicating whether minimum and maximum values in array are already available.
- areMinMaxValuesAvailable() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Returns boolean indicating whether minimum and maximum values in array are already available.
- arePolynomialParametersAvailable() - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Returns boolean indicating whether REAL polynomial parameters have been provided and is available for retrieval.
- arePolynomialParametersAvailable() - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
-
Returns boolean indicating whether polynomial parameters have been provided and are available for retrieval.
- arePolynomialParametersAvailable() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Returns boolean indicating whether REAL polynomial parameters have been provided and is available for retrieval.
- arePolynomialParametersAvailable() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Returns boolean indicating whether REAL polynomial parameters have been provided and is available for retrieval.
- areRootsAvailable() - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
-
Returns boolean indicating whether roots have been estimated and are available for retrieval.
- areRootsPolished() - Method in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Returns boolean indicating whether roots are refined after an initial estimation.
- areWeightsAvailable() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Returns boolean indicating whether weights have been provided and are available for retrieval.
- ARTIFACT_ID_KEY - Static variable in class com.irurueta.numerical.BuildInfo
-
Key to obtain artifactId of this library from properties file.
- artifactId - Variable in class com.irurueta.numerical.BuildInfo
-
ArtifactId of this library.
- as - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Scaled version of provided input matrix.
- ax - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Minimum evaluation point inside the bracket.
- ax - Variable in class com.irurueta.numerical.PadeApproximantEstimator
-
Contains product of "a" and "x" matrices to iteratively improve LU solution.
B
- b - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
-
Estimated "b" parameter of line following equation y = a + b*X
- b - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Upper limit of integration.
- b - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
-
Upper limit of integration.
- b - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Upper limit of integration.
- b - Variable in class com.irurueta.numerical.integration.MidPointQuadrature
-
Upper limit of integration.
- b - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Upper limit of integration.
- b - Variable in class com.irurueta.numerical.integration.TrapezoidalQuadrature
-
Upper limit of integration.
- BarycentricRationalInterpolator - Class in com.irurueta.numerical.interpolation
-
Computes barycentric rational interpolation.
- BarycentricRationalInterpolator(double[], double[], int) - Constructor for class com.irurueta.numerical.interpolation.BarycentricRationalInterpolator
-
Constructor.
- BaseInterpolator - Class in com.irurueta.numerical.interpolation
-
Abstract base class used by all interpolation implementations.
- BaseInterpolator(double[], double[], int) - Constructor for class com.irurueta.numerical.interpolation.BaseInterpolator
-
Constructor.
- BaseInterpolator(double[], double[], int, boolean) - Constructor for class com.irurueta.numerical.interpolation.BaseInterpolator
-
Constructor.
- BaseRadialBasisFunctionInterpolator - Class in com.irurueta.numerical.interpolation
-
Base class for interpolation methods based on Radial Basis Functions to interpolate sparse points.
- BaseRadialBasisFunctionInterpolator(Matrix) - Constructor for class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
-
Constructor.
- bestInliersData - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Data related to inliers found for best result.
- bestInliersData - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Data related to inliers found for best result.
- bestInliersData - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Data related to inliers found for best result.
- bestInliersData - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Data related to inliers found for best result.
- bestMedianResidual - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
-
Best median of error found so far taking into account all provided samples.
- bestMedianResidual - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
-
Best median of error found so far taking into account all provided samples.
- bestMedianResidual - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Best median of error found so far taking into account all provided samples.
- bestNumberInliersData - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Data related to solution producing the largest number of inliers.
- bestResult - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Best solution that has been found so far during an estimation.
- bestResult - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Best solution that has been found so far during an estimation.
- bestResult - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Best solution that has been found so far during an estimation.
- bestResult - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Best solution that has been found so far during an estimation.
- bestResult - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Best solution that has been found so far during an estimation.
- bestResultInliersData - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Data related to inliers found for best result.
- bet - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
-
Beta of variogram.
- beta - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
beta is the probability that a match is declared inlier by mistake, i.e. the ratio of the "inlier" surface by the total surface.
- beta - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
beta is the probability that a match is declared inlier by mistake, i.e. the ratio of the "inlier" surface by the total surface.
- BicubicSpline2DInterpolator - Class in com.irurueta.numerical.interpolation
-
Computes bicubic spline interpolation in two dimensions.
- BicubicSpline2DInterpolator(double[], double[], Matrix) - Constructor for class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
-
Constructor.
- BilinearInterpolator - Class in com.irurueta.numerical.interpolation
-
Interpolation in two dimensions.
- BilinearInterpolator(double[], double[], Matrix) - Constructor for class com.irurueta.numerical.interpolation.BilinearInterpolator
-
Constructor.
- bins - Variable in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Number of samples contained on each bin.
- BisectionSingleRootEstimator - Class in com.irurueta.numerical.roots
-
This class searches for a single REAL root on a single dimension function (i.e. f(x) ).
- BisectionSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.BisectionSingleRootEstimator
-
Empty constructor.
- BisectionSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.BisectionSingleRootEstimator
-
Constructor.
- borig - Variable in class com.irurueta.numerical.integration.UpperSquareRootMidPointMatrixQuadrature
-
Original upper bound of integration.
- borig - Variable in class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadrature
-
Original upper bound of integration.
- BRACKET_EPS - Static variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Constant defining the value by which the largest bracket evaluation value is increased respect the minimum.
- bracketAvailable - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Boolean indicating whether a bracket has been provided or computed.
- bracketAvailable - Variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Boolean indicating whether a bracket has been computed and is available.
- BracketedSingleOptimizer - Class in com.irurueta.numerical.optimization
-
This class searches for brackets of values containing a minimum in a single dimension function.
- BracketedSingleOptimizer() - Constructor for class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Empty Constructor.
- BracketedSingleOptimizer(double, double, double) - Constructor for class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Constructor.
- BracketedSingleOptimizer(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Constructor.
- BracketedSingleRootEstimator - Class in com.irurueta.numerical.roots
-
Computes a root for a single dimension function inside a given bracket of values, in other words, root will only be searched within provided minimum and maximum evaluation points.
- BracketedSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Empty constructor.
- BracketedSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Constructor.
- bracketEvaluationAvailable - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Boolean indicating whether function evaluation at bracket limits and middle point are available or not.
- branch - Variable in class com.irurueta.numerical.BuildInfo
-
Build branch.
- BRANCH_KEY - Static variable in class com.irurueta.numerical.BuildInfo
-
Key to obtain build branch from properties file.
- brent - Variable in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Internal optimizer to find a minimum of a function along a line of input values.
- BrentSingleOptimizer - Class in com.irurueta.numerical.optimization
-
This class uses Brent algorithm to determine a local function minimum for single dimension functions.
- BrentSingleOptimizer() - Constructor for class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Empty constructor.
- BrentSingleOptimizer(double, double, double, double) - Constructor for class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Constructor.
- BrentSingleOptimizer(SingleDimensionFunctionEvaluatorListener, double, double, double, double) - Constructor for class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Constructor.
- BrentSingleRootEstimator - Class in com.irurueta.numerical.roots
-
This class estimates the root of a single dimension continuous function using Brent's method.
- BrentSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.BrentSingleRootEstimator
-
Empty constructor.
- BrentSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.BrentSingleRootEstimator
-
Constructor.
- BUILD_INFO_PROPERTIES - Static variable in class com.irurueta.numerical.BuildInfo
-
Location of properties file that contains build data.
- BUILD_NUMBER_KEY - Static variable in class com.irurueta.numerical.BuildInfo
-
Key to obtain build number from properties file.
- BUILD_TIMESTAMP_KEY - Static variable in class com.irurueta.numerical.BuildInfo
-
Key to obtain build timestamp from properties file.
- buildDirections() - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Internal method to build or rebuild the set of directions if needed.
- BuildInfo - Class in com.irurueta.numerical
-
Contains build data of this library.
- BuildInfo() - Constructor for class com.irurueta.numerical.BuildInfo
-
Constructor.
- buildNumber - Variable in class com.irurueta.numerical.BuildInfo
-
Build number.
- buildTimestamp - Variable in class com.irurueta.numerical.BuildInfo
-
Build timestamp.
- bx - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Middle evaluation point inside the bracket.
C
- C - Static variable in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
-
Golden ratio.
- cache - Variable in class com.irurueta.numerical.DoubleFactorialEstimator
-
Cache of values.
- cache - Variable in class com.irurueta.numerical.LongFactorialEstimator
-
Cache of values.
- CACHE_SIZE - Static variable in class com.irurueta.numerical.DoubleFactorialEstimator
-
Cache size for factorial values that can be represented without overflowing with double precision.
- CACHE_SIZE - Static variable in class com.irurueta.numerical.LongFactorialEstimator
-
Cache size for factorial values that can be represented without overflowing with long precision.
- cast(QuadratureIntegrator<?>) - Static method in class com.irurueta.numerical.integration.QuadratureIntegrator
-
Casts integrator to a quadrature integrator without wildcard parameter. .
- cast(QuadratureMatrixIntegrator<?>) - Static method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Cast integrator to a quadrature integrator without wildcard parameter.
- cast(RombergIntegrator<?>) - Static method in class com.irurueta.numerical.integration.RombergIntegrator
-
Casts integrator to a quadrature integrator without wildcard parameter. .
- cast(RombergMatrixIntegrator<?>) - Static method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Casts integrator to a quadrature integrator without wildcard parameter.
- cast(SimpsonIntegrator<?>) - Static method in class com.irurueta.numerical.integration.SimpsonIntegrator
-
Casts integrator to a quadrature integrator without wildcard parameter.
- cast(SimpsonMatrixIntegrator<?>) - Static method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Casts integrator to a quadrature integrator without wildcard parameter.
- CGOLD - Static variable in class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Is the golden ratio.
- CHI_SQUARED - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Chi squared.
- CHI_SQUARED - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Chi squared.
- chi2 - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
-
Estimated chi square value.
- chisq - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Estimated chi square value of input data
- chisq - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Estimated chi square value of input data.
- chisq - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Estimated chi square value of input data.
- cls - Variable in class com.irurueta.numerical.interpolation.CurveInterpolator
-
True indicates a closed curve, false indicates an open one.
- columns - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Number of columns of quadrature result.
- columns - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Number of columns of quadrature result.
- columns - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Number of columns of quadrature result.
- com.irurueta.numerical - package com.irurueta.numerical
-
This library contains packages for:
- com.irurueta.numerical.fitting - package com.irurueta.numerical.fitting
- com.irurueta.numerical.integration - package com.irurueta.numerical.integration
- com.irurueta.numerical.interpolation - package com.irurueta.numerical.interpolation
- com.irurueta.numerical.optimization - package com.irurueta.numerical.optimization
- com.irurueta.numerical.polynomials - package com.irurueta.numerical.polynomials
- com.irurueta.numerical.polynomials.estimators - package com.irurueta.numerical.polynomials.estimators
- com.irurueta.numerical.robust - package com.irurueta.numerical.robust
-
This package contains robust estimators that can be used to discard outliers for cases where a model of the data is known (i.e. estimating lines, planes or many other geometric objects, etc.)
- com.irurueta.numerical.roots - package com.irurueta.numerical.roots
-
This package contains classes to find function roots.
- com.irurueta.numerical.signal.processing - package com.irurueta.numerical.signal.processing
- commit - Variable in class com.irurueta.numerical.BuildInfo
-
Build commit.
- COMMIT_KEY - Static variable in class com.irurueta.numerical.BuildInfo
-
Key to obtain build commit from properties file.
- ComplexPolynomialEvaluator - Class in com.irurueta.numerical
-
Utility class to evaluate complex polynomials.
- ComplexPolynomialEvaluator(Complex[]) - Constructor for class com.irurueta.numerical.ComplexPolynomialEvaluator
-
Constructor.
- computeAndKeepInliers - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Indicates whether inliers must be computed and kept.
- computeAndKeepInliers - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Indicates whether inliers must be computed and kept.
- computeAndKeepResiduals - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Indicates whether residuals must be computed and kept.
- computeAndKeepResiduals - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Indicates whether residuals must be computed and kept.
- computeBracket() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Computes a bracket of values using the whole range of possible values as an initial guess.
- computeBracket() - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Starting at zero, this method expands the range (i.e. bracket of values) until a zero crossing is found where a root is present or until the bracket becomes unacceptably large, where an exception will be raised.
- computeBracket(double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Computes a bracket of values using provided value as a starting point, and assuming that bracket finishes at Double.MAX_VALUE.
- computeBracket(double) - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Starting from provided point, this method expands the range (i.e.
- computeBracket(double, double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Computes a bracket of values using provided values as a starting point.
- computeBracket(double, double) - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Starting from provided minimum and maximum values, this method expands the range (i.e. bracket of values) until a zero crossing is found where a root is present or until the bracket becomes unacceptably large, where an exception will be raised.
- computeGaussian(double[], double) - Method in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Internal method to compute values of Gaussian vector assumed to be centered at provided value.
- computeInliers(T, double, double[], LMedSRobustEstimatorListener<T>, Sorter<Double>, MSACRobustEstimator.MSACInliersData) - Static method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Computes inliers data for current iteration.
- computeInliers(T, double, BitSet, int, PROSACRobustEstimatorListener<T>, double[]) - Static method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Computes inliers data for current iteration.
- computeInliers(T, int, double, boolean, double, double[], LMedSRobustEstimatorListener<T>, Sorter<Double>, PROMedSRobustEstimator.PROMedSInliersData) - Static method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Computes inliers data for current iteration.
- computeInliers(T, int, double, double[], LMedSRobustEstimatorListener<T>, Sorter<Double>, LMedSRobustEstimator.LMedSInliersData) - Static method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Computes inliers data for current iteration.
- computeIterations(double, int, double) - Static method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Computes number of required iterations to achieve required confidence with current probability of inlier and sample subset size.
- computeIterations(double, int, double) - Static method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Computes number of required iterations to achieve required confidence with current probability of inlier and sample subset size.
- computeMinMaxValues() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Internal method to compute minimum and maximum values of provided input data array.
- computeRandomSubsets(int) - Method in class com.irurueta.numerical.robust.SubsetSelector
-
Computes a random subset of indices within range of number of samples to be used on robust estimators.
- computeRandomSubsets(int, int[]) - Method in class com.irurueta.numerical.robust.FastRandomSubsetSelector
-
Computes a random subset of indices within range of number of samples to be used on robust estimators.
- computeRandomSubsets(int, int[]) - Method in class com.irurueta.numerical.robust.SubsetSelector
-
Computes a random subset of indices within range of number of samples to be used on robust estimators.
- computeRandomSubsetsInRange(int, int, int, boolean) - Method in class com.irurueta.numerical.robust.SubsetSelector
-
Computes a random subset of indices within provided range of positions to be used on robust estimators.
- computeRandomSubsetsInRange(int, int, int, boolean, int[]) - Method in class com.irurueta.numerical.robust.FastRandomSubsetSelector
-
Computes a random subset of indices within provided range of positions to be used on robust estimators.
- computeRandomSubsetsInRange(int, int, int, boolean, int[]) - Method in class com.irurueta.numerical.robust.SubsetSelector
-
Computes a random subset of indices within provided range of positions to be used on robust estimators.
- computeResidual(T, int) - Method in interface com.irurueta.numerical.robust.LMedSRobustEstimatorListener
-
Computes residual for sample located at i-th position using estimation on current iteration.
- computeSortedQualityIndices(double[]) - Static method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Obtains indices of samples corresponding to samples ordered in descending quality scores.
- computeSortedQualityIndices(double[]) - Static method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Obtains indices of samples corresponding to samples ordered in descending quality scores.
- confidence - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Amount of confidence expressed as a value between 0.0 and 1.0 (which is equivalent to 100%).
- confidence - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- confidence - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- confidence - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- confidence - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- confidence - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- ConjugateGradientMultiOptimizer - Class in com.irurueta.numerical.optimization
-
This class searches for a multi dimension function local minimum.
- ConjugateGradientMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Empty constructor.
- ConjugateGradientMultiOptimizer(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double[], double[], double, boolean) - Constructor for class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Constructor.
- ConjugateGradientMultiOptimizer(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double[], double, boolean) - Constructor for class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Constructor.
- CONSTANT_EDGE - Enum constant in enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
-
When convolution kernel reaches edge of signal being convoluted, it is assumed that the signal has a constant value (with a value that can be setup).
- constants - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Constant terms of integral.
- constants - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Constant terms of integral.
- constantValue - Variable in class com.irurueta.numerical.signal.processing.Convolver1D
-
Constant value to use during edge extension when CONSTANT_EDGE method is being used.
- controlMatrix - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Control matrix (B) (it is not used if there is no control).
- convolve() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel using provided configuration for edge extension.
- convolve(double[]) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel using provided configuration for edge extension.
- convolve(double[], double[]) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel assuming a zero value extension method and kernel center located at its origin.
- convolve(double[], double[], double[]) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel assuming a zero value extension method and kernel center located at its origin.
- convolve(double[], double[], double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel assuming a zero value extension method and kernel center located at its origin.
- convolve(double[], double[], int) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel assuming a zero value extension method.
- convolve(double[], double[], int, double[]) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel assuming a zero value extension method.
- convolve(double[], double[], int, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel assuming a zero value extension method.
- convolve(double[], double[], int, Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel assuming a zero value extension method.
- convolve(double[], double[], int, ConvolverEdgeMethod) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel assuming a zero value when constant edge extension is used (which makes it equivalent to zero extension method).
- convolve(double[], double[], int, ConvolverEdgeMethod, double) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel.
- convolve(double[], double[], int, ConvolverEdgeMethod, double[]) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel assuming a zero value when constant edge extension is used (which makes it equivalent to zero extension method).
- convolve(double[], double[], int, ConvolverEdgeMethod, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel assuming a zero value when constant edge extension is used (which makes it equivalent to zero extension method).
- convolve(double[], double[], int, ConvolverEdgeMethod, double, double[]) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel.
- convolve(double[], double[], int, ConvolverEdgeMethod, double, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel.
- convolve(double[], double[], int, ConvolverEdgeMethod, double, Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel.
- convolve(double[], double[], int, ConvolverEdgeMethod, Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel assuming a zero value when constant edge extension is used (which makes it equivalent to zero extension method).
- convolve(double[], double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Convolves provided signal with provided kernel assuming a zero value extension method and kernel center located at its origin.
- Convolver1D - Class in com.irurueta.numerical.signal.processing
-
Convolves a 1D signal with a 1D kernel.
- Convolver1D() - Constructor for class com.irurueta.numerical.signal.processing.Convolver1D
-
Constructor.
- Convolver1D(double[], double[]) - Constructor for class com.irurueta.numerical.signal.processing.Convolver1D
-
Constructor.
- Convolver1D.Convolver1DListener - Interface in com.irurueta.numerical.signal.processing
-
Interface defining events produced by this class.
- ConvolverEdgeMethod - Enum Class in com.irurueta.numerical.signal.processing
-
This enumerator indicates how edges should be treated during convolution.
- ConvolverEdgeMethod() - Constructor for enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
- cor - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
- correct(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Adjusts model state.
- covar - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Covariance of estimated parameters of linear single dimensional function
- covar - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Covariance of estimated parameters of linear single dimensional function.
- covar - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Covariance of estimated parameters of single dimensional function.
- covsrt(Matrix) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Expand in storage the covariance matrix covar, to take into account parameters that are being held fixed.
- covsrt(Matrix) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Expand in storage the covariance matrix covar, to take into account parameters that are being held fixed.
- covsrt(Matrix) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Expand in storage the covariance matrix covar, to take into account parameters that are being held fixed.
- cp - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Number of control vector dimensions (control parameters).
- create() - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Creates an instance of a subclass of this class using default maximum likelihood estimation method and default Gaussian sigma.
- create() - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using default type.
- create() - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using default method.
- create(double) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Creates an instance of a subclass of this class using default maximum likelihood estimation method and provided Gaussian sigma.
- create(double[]) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Creates an instance of a subclass of this class using default maximum likelihood method and Gaussian sigma, and provided input data array
- create(double[], double) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Creates an instance of a subclass of this class using default maximum likelihood method, provided Gaussian sigma and input data array
- create(double[], double, MaximumLikelihoodEstimatorMethod) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Creates an instance of a subclass of this class based on provided method and using provided Gaussian sigma and input data array.
- create(double, double, double[]) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Creates an instance of a subclass of this class using default maximum likelihood method and default Gaussian sigma, and using provided input data array and minimum/maximum values assumed to be contained in provided array.
- create(double, double, double[], double) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Creates an instance of a subclass of this class using default maximum likelihood method and using provided Gaussian sigma, input data array and minimum/maximum values assumed to be contained in provided array.
- create(double, double, double[], double, MaximumLikelihoodEstimatorMethod) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Creates an instance of a subclass of this class based on provided method and using provided Gaussian sigma, input data array and minimum/maximum values assumed to be contained in provided array.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.MatrixIntegrator
-
Creates an integrator using default integrator and quadrature types with default accuracy.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Creates a quadrature integrator using default accuracy and quadrature type.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Creates an integrator using Romberg's method and having default accuracy and quadrature type.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Creates an integrator using Simpson's method and having default accuracy and quadrature type.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.MatrixIntegrator
-
Creates an integrator using default integrator and quadrature types.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Creates a quadrature integrator using default quadrature type.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Creates an integrator using Romberg's method and default quadrature type.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Creates an integrator using Simpson's method and default quadrature type.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double, IntegratorType) - Static method in class com.irurueta.numerical.integration.MatrixIntegrator
-
Creates an integrator using provided integrator type and using default quadrature type.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double, IntegratorType, QuadratureType) - Static method in class com.irurueta.numerical.integration.MatrixIntegrator
-
Creates an integrator using provided integrator and quadrature types.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double, QuadratureType) - Static method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Creates a quadrature integrator.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double, QuadratureType) - Static method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Creates an integrator using Romberg's method.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double, QuadratureType) - Static method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Creates an integrator using Simpson's method.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, IntegratorType) - Static method in class com.irurueta.numerical.integration.MatrixIntegrator
-
Creates an integrator using provided integrator type with default accuracy and using default quadrature type.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, IntegratorType, QuadratureType) - Static method in class com.irurueta.numerical.integration.MatrixIntegrator
-
Creates an integrator using provided integrator and quadrature types with default accuracy.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, QuadratureType) - Static method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Creates a quadrature integrator with default accuracy.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, QuadratureType) - Static method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Creates an integrator using Romberg's method and having default accuracy.
- create(double, double, MatrixSingleDimensionFunctionEvaluatorListener, QuadratureType) - Static method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Creates an integrator using Simpson's method and having default accuracy.
- create(double, double, SingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.Integrator
-
Creates an integrator using default integrator and quadrature types with default accuracy.
- create(double, double, SingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.QuadratureIntegrator
-
Creates a quadrature integrator using default accuracy and quadrature type.
- create(double, double, SingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.RombergIntegrator
-
Creates an integrator using Romberg's method and having default accuracy and quadrature type.
- create(double, double, SingleDimensionFunctionEvaluatorListener) - Static method in class com.irurueta.numerical.integration.SimpsonIntegrator
-
Creates an integrator using Simpson's method and having default accuracy and quadrature type.
- create(double, double, SingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.Integrator
-
Creates an integrator using default integrator and quadrature types.
- create(double, double, SingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.QuadratureIntegrator
-
Creates a quadrature integrator using default quadrature type.
- create(double, double, SingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.RombergIntegrator
-
Creates an integrator using Romberg's method and default quadrature type.
- create(double, double, SingleDimensionFunctionEvaluatorListener, double) - Static method in class com.irurueta.numerical.integration.SimpsonIntegrator
-
Creates an integrator using Simpson's method and default quadrature type.
- create(double, double, SingleDimensionFunctionEvaluatorListener, double, IntegratorType) - Static method in class com.irurueta.numerical.integration.Integrator
-
Creates an integrator using provided integrator type and using default quadrature type.
- create(double, double, SingleDimensionFunctionEvaluatorListener, double, IntegratorType, QuadratureType) - Static method in class com.irurueta.numerical.integration.Integrator
-
Creates an integrator using provided integrator and quadrature types.
- create(double, double, SingleDimensionFunctionEvaluatorListener, double, QuadratureType) - Static method in class com.irurueta.numerical.integration.QuadratureIntegrator
-
Creates a quadrature integrator.
- create(double, double, SingleDimensionFunctionEvaluatorListener, double, QuadratureType) - Static method in class com.irurueta.numerical.integration.RombergIntegrator
-
Creates an integrator using Romberg's method.
- create(double, double, SingleDimensionFunctionEvaluatorListener, double, QuadratureType) - Static method in class com.irurueta.numerical.integration.SimpsonIntegrator
-
Creates an integrator using Simpson's method.
- create(double, double, SingleDimensionFunctionEvaluatorListener, IntegratorType) - Static method in class com.irurueta.numerical.integration.Integrator
-
Creates an integrator using provided integrator type with default accuracy and using default quadrature type.
- create(double, double, SingleDimensionFunctionEvaluatorListener, IntegratorType, QuadratureType) - Static method in class com.irurueta.numerical.integration.Integrator
-
Creates an integrator using provided integrator and quadrature types with default accuracy.
- create(double, double, SingleDimensionFunctionEvaluatorListener, QuadratureType) - Static method in class com.irurueta.numerical.integration.QuadratureIntegrator
-
Creates a quadrature integrator with default accuracy.
- create(double, double, SingleDimensionFunctionEvaluatorListener, QuadratureType) - Static method in class com.irurueta.numerical.integration.RombergIntegrator
-
Creates an integrator using Romberg's method and having default accuracy.
- create(double, double, SingleDimensionFunctionEvaluatorListener, QuadratureType) - Static method in class com.irurueta.numerical.integration.SimpsonIntegrator
-
Creates an integrator using Simpson's method and having default accuracy.
- create(double, MaximumLikelihoodEstimatorMethod) - Static method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Creates an instance of a subclass of this class based on provided method and using provided Gaussian sigma.
- create(int) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided degree and default type.
- create(int) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided degree and default method.
- create(int) - Static method in class com.irurueta.numerical.robust.SubsetSelector
-
Creates a new subset selector instance using provided total number of samples and default subset selector type.
- create(int, PolynomialEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided degree, listener and default type.
- create(int, PolynomialEstimatorListener, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided degree, listener and type.
- create(int, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided degree and type.
- create(int, PolynomialRobustEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided degree, listener and default method.
- create(int, PolynomialRobustEstimatorListener, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided degree, listener and method.
- create(int, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided degree and method.
- create(int, List<PolynomialEvaluation>) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided degree, polynomial evaluations and default type.
- create(int, List<PolynomialEvaluation>) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided degree, evaluations and default method.
- create(int, List<PolynomialEvaluation>, PolynomialEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided degree, evaluations, listener and default type.
- create(int, List<PolynomialEvaluation>, PolynomialEstimatorListener, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided degree, evaluations, listener and type.
- create(int, List<PolynomialEvaluation>, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided degree, evaluations and type.
- create(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided degree, evaluations, listener and default method.
- create(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided degree, evaluations, listener and method.
- create(int, List<PolynomialEvaluation>, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided degree, evaluations and method.
- create(PolynomialEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided listener and default type and degree.
- create(PolynomialEstimatorListener, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided listener and type.
- create(PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided type and default degree.
- create(PolynomialRobustEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided listener and default method.
- create(PolynomialRobustEstimatorListener, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided listener and method.
- create(RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided method.
- create(List<PolynomialEvaluation>) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided evaluations, and default type and degree.
- create(List<PolynomialEvaluation>) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided evaluations and default method.
- create(List<PolynomialEvaluation>, PolynomialEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided evaluations, listener and default type.
- create(List<PolynomialEvaluation>, PolynomialEstimatorListener, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided evaluations, listener and type.
- create(List<PolynomialEvaluation>, PolynomialEstimatorType) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Creates an instance of a polynomial estimator using provided evaluations and type.
- create(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided evaluations, listener and default method.
- create(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided evaluations, listener and method.
- create(List<PolynomialEvaluation>, RobustEstimatorMethod) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Creates a robust polynomial estimator using provided evaluations and method.
- createCopy() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Creates a copy of inlier data.
- createInitialParametersArray() - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFunctionEvaluator
-
Creates array where estimated parameters will be stored.
- createInitialParametersArray() - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFunctionEvaluator
-
Creates array where estimated parameters will be stored.
- createInitialParametersArray() - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFunctionEvaluator
-
Creates array where estimated parameters will be stored.
- createRandomizer(boolean) - Method in class com.irurueta.numerical.robust.FastRandomSubsetSelector
-
Initializes randomizer for an instance of this class.
- createResultArray() - Method in interface com.irurueta.numerical.fitting.LinearFitterMultiDimensionFunctionEvaluator
-
Creates array where basis function results will be stored
- createResultArray() - Method in interface com.irurueta.numerical.fitting.LinearFitterSingleDimensionFunctionEvaluator
-
Creates array where basis function results will be stored
- cubeRoot(double) - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Computes the cube root or x^(1/3) of provided value x
- CubicSplineInterpolator - Class in com.irurueta.numerical.interpolation
-
Computes cubic spline interpolation.
- CubicSplineInterpolator(double[], double[]) - Constructor for class com.irurueta.numerical.interpolation.CubicSplineInterpolator
-
Constructor with x and y vectors and default values for first derivative at the endpoints.
- CubicSplineInterpolator(double[], double[], double, double) - Constructor for class com.irurueta.numerical.interpolation.CubicSplineInterpolator
-
Constructor with x and y vectors, and values of the first derivative at the endpoints.
- CurveInterpolator - Class in com.irurueta.numerical.interpolation
-
Computes curve interpolation of multidimensional points using cubic splines.
- CurveInterpolator(Matrix) - Constructor for class com.irurueta.numerical.interpolation.CurveInterpolator
-
Constructor assuming that curve is NOT closed.
- CurveInterpolator(Matrix, boolean) - Constructor for class com.irurueta.numerical.interpolation.CurveInterpolator
-
Constructor.
- cx - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Maximum evaluation point inside the bracket.
- cX - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Internal matrix reused for efficiency while provided input matrices keep the same size.
D
- d - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Denominator of Padé approximant.
- d - Variable in class com.irurueta.numerical.interpolation.BarycentricRationalInterpolator
-
Order of desired approximation.
- dbrent - Variable in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Internal optimizer to find a minimum of a function along a line of input values.
- DEFAULT_ADJUST_COVARIANCE - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Indicates whether covariance must be adjusted or not after fitting is finished.
- DEFAULT_ADJUST_COVARIANCE - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Indicates whether covariance must be adjusted or not after fitting is finished.
- DEFAULT_ADJUST_COVARIANCE - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Indicates whether covariance must be adjusted or not after fitting is finished.
- DEFAULT_ALLOW_LMSE_SOLUTION - Static variable in class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Indicates if by default an LMSE (Least Mean Square Error) solution is allowed if more evaluations than the required minimum are provided.
- DEFAULT_BETA - Static variable in class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
-
Default Beta value to be used.
- DEFAULT_BETA - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Defines the default value for beta, which is the probability that a match is declared inlier by mistake, i.e. the ratio of the "inlier" surface by the total surface.
- DEFAULT_BETA - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Defines the default value for beta, which is the probability that a match is declared inlier by mistake, i.e. the ratio of the "inlier" surface by the total surface.
- DEFAULT_COMPUTE_AND_KEEP_INLIERS - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Indicates that by default inliers will only be computed but not kept.
- DEFAULT_COMPUTE_AND_KEEP_INLIERS - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Indicates that by default inliers will only be computed but not kept.
- DEFAULT_COMPUTE_AND_KEEP_RESIDUALS - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Indicates that by default residuals will only be computed but not kept.
- DEFAULT_COMPUTE_AND_KEEP_RESIDUALS - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Indicates that by default residuals will only be computed but not kept.
- DEFAULT_CONFIDENCE - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Constant defining default confidence of the estimated result, which is 99%.
- DEFAULT_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Constant defining default confidence of the estimated result, which is 99%.
- DEFAULT_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Constant defining default confidence of estimated result, which is 99%.
- DEFAULT_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Constant defining default confidence of the estimated result, which is 99%.
- DEFAULT_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Constant defining default confidence of the estimated result, which is 99%.
- DEFAULT_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Constant defining default confidence of the estimated result, which is 99%.
- DEFAULT_CONSTANT_VALUE - Static variable in class com.irurueta.numerical.signal.processing.Convolver1D
-
Default constant value to use during convolution if CONSTANT_EDGE method is being used for signal's edge extension.
- DEFAULT_EDGE_METHOD - Static variable in class com.irurueta.numerical.signal.processing.Convolver1D
-
Default method to use for signal's edge extension.
- DEFAULT_ESTIMATOR_TYPE - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Default estimator type.
- DEFAULT_ETA0 - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Defines the default value for the maximum probability that a solution with more than inliersNStar in U_nStar exist and was not found after k samples.
- DEFAULT_ETA0 - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Defines the default value for the maximum probability that a solution with more than inliersNStar in U_nStar exist and was not found after k samples.
- DEFAULT_GAUSSIAN_SIGMA - Static variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Default Gaussian sigma assigned to each sample.
- DEFAULT_HMAX - Static variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Default transformation of range of integration.
- DEFAULT_HMAX - Static variable in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
-
Default transformation of range of integration.
- DEFAULT_IMPROVEMENT_TIMES - Static variable in class com.irurueta.numerical.PadeApproximantEstimator
-
Number of times to iteratively improve LU decomposition solution by default.
- DEFAULT_INLIER_FACTOR - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Default factor to normalize threshold to determine inliers.
- DEFAULT_INLIER_FACTOR - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Default factor to normalize threshold to determine inliers.
- DEFAULT_INTEGRATOR_TYPE - Static variable in class com.irurueta.numerical.integration.Integrator
-
Default integrator type.
- DEFAULT_INTEGRATOR_TYPE - Static variable in class com.irurueta.numerical.integration.MatrixIntegrator
-
Default integrator type.
- DEFAULT_ITMAX - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Default maximum number of iterations.
- DEFAULT_ITMAX - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Default maximum number of iterations.
- DEFAULT_ITMAX - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Default maximum number of iterations.
- DEFAULT_KERNEL_CENTER - Static variable in class com.irurueta.numerical.signal.processing.Convolver1D
-
Default position of kernel center.
- DEFAULT_MAX_EVAL_POINT - Static variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Default maximum evaluation point where the bracket is supposed to start By default, if no bracket is computed, the whole range of values is used for minimum estimation.
- DEFAULT_MAX_EVAL_POINT - Static variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Default maximum evaluation point.
- DEFAULT_MAX_EVALUATIONS - Static variable in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Default number of evaluations to be weighted and taken into account.
- DEFAULT_MAX_ITERATIONS - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Default maximum allowed number of iterations.
- DEFAULT_MAX_ITERATIONS - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Default maximum allowed number of iterations.
- DEFAULT_MAX_ITERATIONS - Static variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Default maximum allowed number of iterations.
- DEFAULT_MAX_ITERATIONS - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Default maximum allowed number of iterations.
- DEFAULT_MAX_ITERATIONS - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Default maximum allowed number of iterations.
- DEFAULT_MAX_ITERATIONS - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Default maximum allowed number of iterations.
- DEFAULT_MAX_OUTLIERS_PROPORTION - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Default maximum allowed outliers proportion in the input data.
- DEFAULT_MAX_OUTLIERS_PROPORTION - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Default maximum allowed outliers proportion in the input data.
- DEFAULT_MEASUREMENT_NOISE_VARIANCE - Static variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Independent measurement noise variance assumed when no measurement noise covariance matrix is provided.
- DEFAULT_METHOD - Static variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Default method to find the most likely value.
- DEFAULT_MIDDLE_EVAL_POINT - Static variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Default middle evaluation point where the bracket is supposed to start By default, if no bracket is computed, the whole range of values is used for minimum estimation.
- DEFAULT_MIN_EVAL_POINT - Static variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Default minimum evaluation point where the bracket is supposed to start By default, if no bracket is computed, the whole range of values is used for minimum estimation.
- DEFAULT_MIN_EVAL_POINT - Static variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Default minimum evaluation point.
- DEFAULT_NDONE - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Default convergence parameter.
- DEFAULT_NDONE - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Default convergence parameter.
- DEFAULT_NDONE - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Default convergence parameter.
- DEFAULT_NUG - Static variable in class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
-
Default offset to use.
- DEFAULT_NUMBER_OF_BINS - Static variable in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Default number of bins to be used on the histogram.
- DEFAULT_POLISH_ROOTS - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Constant indicating whether roots will be refined.
- DEFAULT_PROCESS_NOISE_VARIANCE - Static variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Independent process noise variance assumed when no process noise covariance matrix is provided.
- DEFAULT_PROGRESS_DELTA - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Default amount of progress variation before notifying a change in estimation progress.
- DEFAULT_PROGRESS_DELTA - Static variable in class com.irurueta.numerical.robust.RobustEstimator
-
Default amount of progress variation before notifying a change in estimation progress.
- DEFAULT_QUADRATURE_TYPE - Static variable in class com.irurueta.numerical.integration.Integrator
-
Default quadrature type.
- DEFAULT_QUADRATURE_TYPE - Static variable in class com.irurueta.numerical.integration.MatrixIntegrator
-
Default quadrature type.
- DEFAULT_ROBUST_METHOD - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Default robust estimator method when none is provided.
- DEFAULT_SEED_RANDOMIZER_WITH_TIME - Static variable in class com.irurueta.numerical.robust.FastRandomSubsetSelector
-
Constant defining whether randomizer needs to be initialized with system timer.
- DEFAULT_SORT_WEIGHTS - Static variable in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Indicates if weights are sorted by default so that largest weighted evaluations are used first.
- DEFAULT_STOP_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Default value to be used for stop threshold.
- DEFAULT_STOP_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Default value to be used for stop threshold.
- DEFAULT_STOP_THRESHOLD - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Default value to be used for stop threshold.
- DEFAULT_STOP_THRESHOLD_ENABLED - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Indicates whether the algorithm must stop prematurely when dynamically computed threshold using median of residuals has a value lower than provided threshold in listener.
- DEFAULT_SUBSET_SELECTOR_TYPE - Static variable in class com.irurueta.numerical.robust.SubsetSelector
-
Defines default subset selector type.
- DEFAULT_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Constant defining default threshold to determine whether polynomials are inliers or not.
- DEFAULT_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Constant defining default threshold to determine whether polynomials are inliers or not.
- DEFAULT_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Constant defining default threshold to determine whether polynomials are inliers or not.
- DEFAULT_TOL - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Default tolerance to reach convergence.
- DEFAULT_TOL - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Default tolerance to reach convergence.
- DEFAULT_TOL - Static variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Default tolerance to reach convergence.
- DEFAULT_TOL - Static variable in class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
-
Default tolerance.
- DEFAULT_TOL - Static variable in class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
-
Default tolerance.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Constant defining the default accuracy of the estimated minimum.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Constant defining default tolerance or accuracy to be achieved on the minimum being estimated by this class.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Default tolerance.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Constant defining default tolerance or accuracy to be achieved on the minimum being estimated by this class.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
-
Constant defining the default accuracy of the estimated minimum.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Constant defining default tolerance or accuracy to be achieved on the minimum being estimated by this class.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Constant defining default tolerance or accuracy to be achieved on the minimum being estimated by this class.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Constant defining default tolerance or accuracy to be achieved on the minimum being estimated by this class.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
-
Constant defining default tolerance to find a root.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.BrentSingleRootEstimator
-
Constant defining default accuracy of the estimated root.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
-
Constant defining default tolerance to find a root.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
-
Constant defining default accuracy of the estimated root.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.RidderSingleRootEstimator
-
Constant defining default accuracy of the estimated root.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
-
Constant defining default accuracy of the estimated root.
- DEFAULT_TOLERANCE - Static variable in class com.irurueta.numerical.roots.SecantSingleRootEstimator
-
Constant defining default accuracy of the estimated root.
- DEFAULT_USE_GEOMETRIC_DISTANCE - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Flag indicating whether geometric distance is used by default or not to find outliers.
- DEFAULT_USE_HISTOGRAM_INITIAL_SOLUTION - Static variable in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Boolean indicating if an initial solution should be obtained first by using the Histogram method.
- DEFAULT_USE_INLIER_THRESHOLD - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Indicates whether the inlier threshold will be used to find inliers along with their median of residuals.
- DEFAULT_USE_POLAK_RIBIERE - Static variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Defines whether Polak-Ribiere is used if true, otherwise Fletcher-Reeves will be used.
- DEFAULT_USE_POLAK_RIBIERE - Static variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Defines whether Polak-Ribiere is used if true, otherwise Fletcher-Reeves will be used.
- degree - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Degree of polynomial to be estimated.
- denominators - Variable in class com.irurueta.numerical.PadeApproximantEstimator.Result
-
Denominator coefficients.
- derivative() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Replaces this instance by its derivative.
- derivative(double) - Method in class com.irurueta.numerical.DerivativeEstimator
-
Computes the function derivative at provided point x.
- derivative(double) - Method in class com.irurueta.numerical.SavitzkyGolayDerivativeEstimator
-
Computes the function derivative at provided point x.
- derivative(double) - Method in class com.irurueta.numerical.SymmetricDerivativeEstimator
-
Computes the function derivative at provided point x.
- derivative(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes derivative of polynomial.
- DERIVATIVE_EVALUATION - Enum constant in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
-
Evaluation of the nth-derivative of a polynomial.
- derivativeAndReturnNew() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes derivative of polynomial.
- DerivativeBrentSingleOptimizer - Class in com.irurueta.numerical.optimization
-
Class to compute local minimum on single dimension functions using a modification of Brent's algorithm that takes into account the function's derivative.
- DerivativeBrentSingleOptimizer() - Constructor for class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Empty constructor.
- DerivativeBrentSingleOptimizer(SingleDimensionFunctionEvaluatorListener, SingleDimensionFunctionEvaluatorListener, double, double, double, double) - Constructor for class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Constructor.
- DerivativeConjugateGradientMultiOptimizer - Class in com.irurueta.numerical.optimization
-
This class searches for a multi dimension function local minimum.
- DerivativeConjugateGradientMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Empty constructor.
- DerivativeConjugateGradientMultiOptimizer(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double[], double[], double, boolean) - Constructor for class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Constructor.
- DerivativeEstimator - Class in com.irurueta.numerical
-
Class to estimate the derivative of a single dimension function at a given point.
- DerivativeEstimator(SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.DerivativeEstimator
-
Constructor
- DerivativeLineMultiOptimizer - Class in com.irurueta.numerical.optimization
-
Class to find a minimum on a multidimensional function along a given line of input values.
- DerivativeLineMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Empty constructor.
- DerivativeLineMultiOptimizer(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double[], double[]) - Constructor for class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Constructor.
- derivativeListener - Variable in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Listener to evaluate the functions derivative.
- derivativeListener - Variable in class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
-
Listener to evaluate a function's derivative.
- derivativeOrder - Variable in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
-
Order of derivative.
- DerivativePolynomialEvaluation - Class in com.irurueta.numerical.polynomials.estimators
-
Contains an evaluation of the derivative of a given order of a polynomial and the point where such derivative has been evaluated.
- DerivativePolynomialEvaluation() - Constructor for class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
-
Constructor.
- DerivativePolynomialEvaluation(double, double) - Constructor for class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
- DerivativePolynomialEvaluation(double, double, int) - Constructor for class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
-
Constructor.
- DerivativeSingleRootEstimator - Class in com.irurueta.numerical.roots
-
Abstract class to find function roots of a single dimension function using also its derivative information.
- DerivativeSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
-
Empty constructor.
- DerivativeSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
-
Constructor.
- DerivativeSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, SingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
-
Constructor
- dft - Variable in class com.irurueta.numerical.DirectionalDerivativeEvaluator
-
Array containing gradient at point p.
- differentiateAt(double) - Method in class com.irurueta.numerical.DirectionalDerivativeEvaluator
-
Computes derivative on current direction of a function at distance x from current point and using current listener and gradient listener.
- dim - Variable in class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
-
Dimension of points to be interpolated.
- dim - Variable in class com.irurueta.numerical.interpolation.CurveInterpolator
-
Number of points dimensions.
- DIRECT_EVALUATION - Enum constant in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
-
A direct evaluation of a polynomial.
- direction - Variable in class com.irurueta.numerical.DirectionalEvaluator
-
Vector indicating the direction of the line where the function is evaluated.
- DirectionalDerivativeEvaluator - Class in com.irurueta.numerical
-
This class evaluates a multidimensional function and obtains its gradient along a line; such line is defined by an input point and a given direction.
- DirectionalDerivativeEvaluator(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double[], double[]) - Constructor for class com.irurueta.numerical.DirectionalDerivativeEvaluator
-
Constructor.
- DirectionalEvaluator - Class in com.irurueta.numerical
-
This class evaluates a multidimensional function along a line, such line is defined by an input point and a given direction.
- DirectionalEvaluator(MultiDimensionFunctionEvaluatorListener, double[], double[]) - Constructor for class com.irurueta.numerical.DirectionalEvaluator
-
Constructor.
- DirectPolynomialEvaluation - Class in com.irurueta.numerical.polynomials.estimators
-
Contains an evaluation of a polynomial and the point where the polynomial has been evaluated.
- DirectPolynomialEvaluation() - Constructor for class com.irurueta.numerical.polynomials.estimators.DirectPolynomialEvaluation
-
Constructor.
- DirectPolynomialEvaluation(double, double) - Constructor for class com.irurueta.numerical.polynomials.estimators.DirectPolynomialEvaluation
-
Constructor.
- dj - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
- DOUBLE_EXPONENTIAL_RULE - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
-
Double exponential rule.
- DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener - Interface in com.irurueta.numerical.integration
-
Interface to define how matrix (multivariate) single dimension functions can be evaluated in Double Exponential Rule Quadrature function integrators.
- DoubleExponentialRuleMatrixQuadrature - Class in com.irurueta.numerical.integration
-
Implementation of quadrature using double exponential, which allows integration with a variable transformation.
- DoubleExponentialRuleMatrixQuadrature(DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Constructor.
- DoubleExponentialRuleMatrixQuadrature(DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Constructor.
- DoubleExponentialRuleMatrixQuadrature(MatrixSingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Constructor.
- DoubleExponentialRuleMatrixQuadrature(MatrixSingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Constructor.
- DoubleExponentialRuleQuadrature - Class in com.irurueta.numerical.integration
-
Implementation of quadrature using double exponential, which allows integration with a variable transformation.
- DoubleExponentialRuleQuadrature(DoubleExponentialSingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
-
Constructor with default maximum step size.
- DoubleExponentialRuleQuadrature(DoubleExponentialSingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
-
Constructor.
- DoubleExponentialRuleQuadrature(SingleDimensionFunctionEvaluatorListener, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
-
Constructor with default maximum step size.
- DoubleExponentialRuleQuadrature(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
-
Constructor.
- DoubleExponentialRuleQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using double exponential quadrature.
- DoubleExponentialRuleQuadratureIntegrator(double, double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
-
Constructor with default accuracy.
- DoubleExponentialRuleQuadratureIntegrator(double, double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
-
Constructor.
- DoubleExponentialRuleQuadratureIntegrator(double, double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
-
Constructor with default accuracy.
- DoubleExponentialRuleQuadratureIntegrator(double, double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
-
Constructor.
- DoubleExponentialRuleQuadratureIntegrator(double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
-
Constructor with default accuracy and default maximum step size.
- DoubleExponentialRuleQuadratureIntegrator(double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
-
Constructor with default maximum step size.
- DoubleExponentialRuleQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
-
Constructor with default accuracy and default maximum step size.
- DoubleExponentialRuleQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
-
Constructor.
- DoubleExponentialRuleQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes matrix function integration by using double exponential quadrature.
- DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor.
- DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor.
- DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default accuracy and default maximum step size.
- DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default maximum step size.
- DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default accuracy and default maximum step size.
- DoubleExponentialRuleQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor.
- DoubleExponentialSingleDimensionFunctionEvaluatorListener - Interface in com.irurueta.numerical.integration
-
Interface to define how single dimension functions can be evaluated in Double Exponential Rule Quadrature function integrators.
- DoubleFactorialEstimator - Class in com.irurueta.numerical
-
Estimates factorial values as double precision floating point values.
- DoubleFactorialEstimator() - Constructor for class com.irurueta.numerical.DoubleFactorialEstimator
-
Constructor with default cache size.
- DoubleFactorialEstimator(int) - Constructor for class com.irurueta.numerical.DoubleFactorialEstimator
-
Constructor.
- dp - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Number of state vector dimensions (dynamic parameters).
- dstar - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
- dy - Variable in class com.irurueta.numerical.interpolation.PolynomialInterpolator
-
An indication of interpolation error on the y values of the last call to
BaseInterpolator.interpolate(double)
. - dy - Variable in class com.irurueta.numerical.interpolation.RationalInterpolator
-
An indication of interpolation error on the y values of the last call to
BaseInterpolator.interpolate(double)
.
E
- edgeMethod - Variable in class com.irurueta.numerical.signal.processing.Convolver1D
-
Edge extension method to use during convolution when parts of the kernel are required to lie outside the signal's boundaries.
- endX - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
End point of interval being integrated.
- eps - Variable in class com.irurueta.numerical.integration.QuadratureIntegrator
-
Required accuracy.
- eps - Variable in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Required accuracy.
- eps - Variable in class com.irurueta.numerical.integration.RombergIntegrator
-
Required accuracy.
- eps - Variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Required accuracy.
- eps - Variable in class com.irurueta.numerical.integration.SimpsonIntegrator
-
Required accuracy.
- eps - Variable in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Required accuracy.
- EPS - Static variable in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Value to be considered as the machine precision.
- EPS - Static variable in class com.irurueta.numerical.DerivativeEstimator
-
Constant defining machine precision for this algorithm.
- EPS - Static variable in class com.irurueta.numerical.GradientEstimator
-
Constant considered as machine precision.
- EPS - Static variable in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Value to be considered as the machine precision.
- EPS - Static variable in class com.irurueta.numerical.integration.QuadratureIntegrator
-
Default accuracy.
- EPS - Static variable in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Default accuracy.
- EPS - Static variable in class com.irurueta.numerical.integration.RombergIntegrator
-
Default accuracy.
- EPS - Static variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Default accuracy.
- EPS - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
-
Default accuracy.
- EPS - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
-
Default accuracy.
- EPS - Static variable in class com.irurueta.numerical.integration.SimpsonIntegrator
-
Default accuracy.
- EPS - Static variable in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Default accuracy.
- EPS - Static variable in class com.irurueta.numerical.JacobianEstimator
-
Constant considered as machine precision.
- EPS - Static variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Constant defining a value to be considered as machine precision.
- EPS - Static variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Constant defining a value to be considered as machine precision.
- EPS - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Machine precision.
- EPS - Static variable in class com.irurueta.numerical.polynomials.Polynomial
-
Constant defining machine precision
- EPS - Static variable in class com.irurueta.numerical.roots.BrentSingleRootEstimator
-
Constant defining a small value which is considered as machine precision.
- EPS - Static variable in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Constant defining machine precision.
- EPS - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Constant considered as machine precision.
- EPS - Static variable in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Constant defining machine precision.
- EPS - Static variable in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Constant defining machine precision.
- errorCovPost - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
- errorCovPre - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)
- estimate() - Method in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Starts the estimation of the most likely value contained within provided input data array.
- estimate() - Method in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Starts the estimation of the most likely value contained within provided input data array.
- estimate() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Starts the estimation of the most likely value contained within provided input data array.
- estimate() - Method in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Estimates polynomial.
- estimate() - Method in class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Estimates a polynomial based on provided evaluations.
- estimate() - Method in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Estimates polynomial.
- estimate() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Estimates a polynomial based on provided evaluations.
- estimate() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Estimates polynomial.
- estimate() - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Estimates polynomial.
- estimate() - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Estimates polynomial.
- estimate() - Method in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Estimates polynomial.
- estimate() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Estimates a polynomial based on provided evaluations.
- estimate() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Robustly estimates an instance of T.
- estimate() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Robustly estimates an instance of T.
- estimate() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Robustly estimates an instance of T.
- estimate() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Robustly estimates an instance of T.
- estimate() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Robustly estimates an instance of T.
- estimate() - Method in class com.irurueta.numerical.robust.RobustEstimator
-
Robustly estimates an instance of T.
- estimate() - Method in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
-
Estimates a single root of the provided single dimension function contained within a given bracket of values.
- estimate() - Method in class com.irurueta.numerical.roots.BrentSingleRootEstimator
-
Estimates a local root for a given single dimension function being evaluated by provided listener.
- estimate() - Method in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
-
Estimates a single root of the provided single dimension function contained within a given bracket of values.
- estimate() - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Estimates the root of provided polynomial.
- estimate() - Method in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Estimates the roots of provided polynomial.
- estimate() - Method in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
-
Estimates a local root for a given single dimension function being evaluated by provided listener.
- estimate() - Method in class com.irurueta.numerical.roots.RidderSingleRootEstimator
-
Estimates a local root for a given single dimension function being evaluated by provided listener.
- estimate() - Method in class com.irurueta.numerical.roots.RootEstimator
-
Estimates the root or roots for a given function.
- estimate() - Method in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
-
Estimates a local root for a given single dimension function being evaluated by provided listener.
- estimate() - Method in class com.irurueta.numerical.roots.SecantSingleRootEstimator
-
Estimates a local root for a given single dimension function being evaluated by provided listener.
- estimate() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Estimates the roots of provided polynomial.
- estimate() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Estimates the roots of provided polynomial.
- estimate(double[], double[]) - Method in class com.irurueta.numerical.interpolation.InterpolatingPolynomialEstimator
-
Estimates polynomial from provided x and y points.
- estimate(double[], double[], double[]) - Method in class com.irurueta.numerical.interpolation.AccurateInterpolatingPolynomialEstimator
-
Estimates polynomial coefficients from provided x and y points.
- estimate(double[], double[], double[]) - Method in class com.irurueta.numerical.interpolation.InterpolatingPolynomialEstimator
-
Estimates polynomial coefficients from provided x and y points.
- estimate(double[], double[], double[]) - Method in class com.irurueta.numerical.interpolation.SimpleInterpolatingPolynomialEstimator
-
Estimates polynomial coefficients from provided x and y points.
- estimate(double[], double[], Polynomial) - Method in class com.irurueta.numerical.interpolation.InterpolatingPolynomialEstimator
-
Estimates polynomial from provided x and y points.
- estimateCoefficients(double[], double[]) - Method in class com.irurueta.numerical.interpolation.InterpolatingPolynomialEstimator
-
Estimates polynomial coefficients from provided x and y points.
- estimatedThreshold - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
-
Estimated threshold to determine whether samples are inliers or not.
- estimatedThreshold - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Estimated threshold to determine whether samples are inliers or not.
- estimatePadeCoefficients(double[]) - Method in class com.irurueta.numerical.PadeApproximantEstimator
-
Estimates Padé coefficients for provided Taylor power series ones.
- estimatePadeCoefficients(double[], double[], double[]) - Method in class com.irurueta.numerical.PadeApproximantEstimator
-
Estimates Padé coefficients for provided Taylor power series ones.
- estimatePadeCoefficients(double[], int, double[], double[]) - Method in class com.irurueta.numerical.PadeApproximantEstimator
-
Estimates Padé coefficients for provided Taylor power series ones.
- estimatePreliminarSolutions(int[], List<T>) - Method in interface com.irurueta.numerical.robust.LMedSRobustEstimatorListener
-
Estimates a list of possible preliminary solutions to be used during an iteration of LMedS robust estimator.
- eta0 - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
eta0 is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
- eta0 - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
eta0 is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
- evaluate(double) - Method in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator.EvaluatorListener
-
Evaluates the aggregation of Gaussians for all the samples in input data array, by assuming that each sample has an associated small Gaussian centered at the sample value and with a small sigma value.
- evaluate(double) - Method in class com.irurueta.numerical.interpolation.GaussianRadialBasisFunction
-
Evaluates RBF at provided distance between two points.
- evaluate(double) - Method in class com.irurueta.numerical.interpolation.InverseMultiQuadricRadialBasisFunction
-
Evaluates RBF at provided distance between two points.
- evaluate(double) - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
-
Evaluates variogram at provided distance.
- evaluate(double) - Method in class com.irurueta.numerical.interpolation.MultiQuadricRadialBasisFunction
-
Evaluates RBF at provided distance between two points.
- evaluate(double) - Method in interface com.irurueta.numerical.interpolation.RadialBasisFunction
-
Evaluates RBF at provided distance between two points.
- evaluate(double) - Method in class com.irurueta.numerical.interpolation.ThinPlateRadialBasisFunction
-
Evaluates RBF at provided distance between two points.
- evaluate(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Evaluates polynomial at provided value.
- evaluate(double) - Method in class com.irurueta.numerical.RealPolynomialEvaluator
-
Evaluates polynomial at provided point x.
- evaluate(double) - Method in interface com.irurueta.numerical.SingleDimensionFunctionEvaluatorListener
-
Evaluates a single dimension function such as f(x) at provided point and returns the result.
- evaluate(double[]) - Method in interface com.irurueta.numerical.MultiDimensionFunctionEvaluatorListener
-
Evaluates a multi dimension function such as f([x1, x2, ..., xn]) at provided multidimensional point and returns the result as a scalar value.
- evaluate(double[], double) - Static method in class com.irurueta.numerical.PolynomialEvaluator
-
Evaluates polynomial formed by provided polynomial parameters at provided point x.
- evaluate(double[], double[]) - Method in interface com.irurueta.numerical.fitting.LinearFitterMultiDimensionFunctionEvaluator
-
Evaluates a linear multi dimension function at provided point and returns the evaluations of the basis functions at such point
- evaluate(double[], double[]) - Method in interface com.irurueta.numerical.MultiVariateFunctionEvaluatorListener
-
Evaluates a multi variate function such as f1(x1, x2, ...), f2(x1, x2, ...) at provided multidimensional point and returns the result as a vectorial value
- evaluate(double, double) - Method in interface com.irurueta.numerical.integration.DoubleExponentialSingleDimensionFunctionEvaluatorListener
-
Evaluates a single dimension function such as f(x) at provided point and returns the result.
- evaluate(double, double[]) - Method in interface com.irurueta.numerical.fitting.LinearFitterSingleDimensionFunctionEvaluator
-
Evaluates a linear single dimension function at provided point and returns the evaluations of the basis functions at such point
- evaluate(double, double, Matrix) - Method in interface com.irurueta.numerical.integration.DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener
-
Evaluates a single dimension function such as f(x) at provided point and returns the result.
- evaluate(double, Matrix) - Method in interface com.irurueta.numerical.integration.MatrixSingleDimensionFunctionEvaluatorListener
-
Evaluates a matrix function such as f(x1) at provided point and returns the result as a matrix.
- evaluate(int, double[], double[], double[]) - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFunctionEvaluator
-
Evaluates a non-linear multi dimension function at provided point using provided parameters and returns its evaluation and derivatives of the function respect the function parameters.
- evaluate(int, double[], double[], double[], Matrix) - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFunctionEvaluator
-
Evaluates a non-linear multi variate function at provided point using provided parameters and returns its evaluation and jacobian of the function respect the function parameters
- evaluate(int, double, double[], double[]) - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFunctionEvaluator
-
Evaluates a non-linear single dimension function at provided point using provided parameters and returns its evaluation and derivatives of the function respect the function parameters
- evaluate(Complex) - Method in class com.irurueta.numerical.ComplexPolynomialEvaluator
-
Evaluates polynomial at provided point x.
- evaluate(Complex[], Complex) - Static method in class com.irurueta.numerical.PolynomialEvaluator
-
Evaluates polynomial formed by provided polynomial parameters at provided point x.
- evaluateAt(double) - Method in class com.irurueta.numerical.DirectionalEvaluator
-
Evaluates a function using current listener at a distance x from current point using current direction
- evaluateBracket() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Computes function evaluations at provided or estimated bracket locations.
- evaluateDerivative(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Evaluates derivative of polynomial at provided value.
- evaluateGradient(double[], double[]) - Method in interface com.irurueta.numerical.GradientFunctionEvaluatorListener
-
Computes/retrieves a multidimensional function's gradient.
- evaluateNthDerivative(double, int) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Evaluates nth-derivative of polynomial at provided value.
- evaluateSecondDerivative(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Evaluates second derivative of polynomial at provided value.
- evaluation - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
-
Evaluation of polynomial at point x.
- EvaluationException - Exception in com.irurueta.numerical
-
Exception raised when function evaluation fails.
- EvaluationException() - Constructor for exception com.irurueta.numerical.EvaluationException
-
Constructor.
- EvaluationException(String) - Constructor for exception com.irurueta.numerical.EvaluationException
-
Constructor with String containing message.
- EvaluationException(String, Throwable) - Constructor for exception com.irurueta.numerical.EvaluationException
-
Constructor with message and cause.
- EvaluationException(Throwable) - Constructor for exception com.irurueta.numerical.EvaluationException
-
Constructor with cause.
- evaluations - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
- evaluations - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
- evaluator - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Evaluator of functions.
- evaluator - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Evaluator of functions.
- evaluator - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Evaluator of functions.
- evaluator - Variable in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Evaluator of functions
- evaluator - Variable in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Evaluator of functions.
- evaluator - Variable in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Class in charge of evaluating a function through a given line.
- evaluator - Variable in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Class in charge of evaluating a function through a given line.
- EvaluatorListener() - Constructor for class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator.EvaluatorListener
- exponential(Matrix) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Estimates exponential of provided matrix with default error tolerance.
- exponential(Matrix, double) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Estimates exponential of provided matrix.
- exponential(Matrix, Matrix) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Estimates exponential of provided matrix with default error tolerance.
- exponential(Matrix, Matrix, double) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Estimates exponential of provided matrix.
- EXPONENTIAL_MID_POINT - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
-
Exponential mid-point quadrature.
- ExponentialMatrixEstimator - Class in com.irurueta.numerical
-
Estimates exponential of a square matrix.
- ExponentialMatrixEstimator() - Constructor for class com.irurueta.numerical.ExponentialMatrixEstimator
- ExponentialMidPointMatrixQuadrature - Class in com.irurueta.numerical.integration
-
This is an exact replacement for MidPointMatrixQuadrature, except that upper limit is assumed to be infinite.
- ExponentialMidPointMatrixQuadrature(double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.ExponentialMidPointMatrixQuadrature
-
Constructor.
- ExponentialMidPointQuadrature - Class in com.irurueta.numerical.integration
-
This is an exact replacement for MidPointQuadrature, except that upper limit is assumed to be infinite.
- ExponentialMidPointQuadrature(double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.ExponentialMidPointQuadrature
-
Constructor.
F
- f - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Contains copy of estimated result.
- fa - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Function evaluation value at minimum evaluation point inside the bracket.
- FACTOR - Static variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Factor to use to modify initial values when searching for a bracket.
- factorial(int) - Method in class com.irurueta.numerical.DoubleFactorialEstimator
-
Gets factorial of provided value represented with double precision.
- factorial(int) - Method in class com.irurueta.numerical.LongFactorialEstimator
-
Gets factorial of provided value represented with double precision.
- factorialEstimator - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Estimates factorial values.
- FalsePositionSingleRootEstimator - Class in com.irurueta.numerical.roots
-
Computes a root for a single dimension function inside a given bracket of values, in other words, root will only be searched within provided minimum and maximum evaluation points.
- FalsePositionSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
-
Empty constructor.
- FalsePositionSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
-
Constructor.
- FAST_RANDOM_SUBSET_SELECTOR - Enum constant in enum class com.irurueta.numerical.robust.SubsetSelectorType
- FastRandomSubsetSelector - Class in com.irurueta.numerical.robust
-
This class computes indices of subsets of samples using a uniform randomizer to pick random samples as fast as possible.
- FastRandomSubsetSelector(int) - Constructor for class com.irurueta.numerical.robust.FastRandomSubsetSelector
-
Constructor.
- FastRandomSubsetSelector(int, boolean) - Constructor for class com.irurueta.numerical.robust.FastRandomSubsetSelector
-
Constructor.
- fb - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Function evaluation value at middle evaluation point inside the bracket.
- fc - Variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Function evaluation value at maximum evaluation point inside the bracket.
- fillDerivativeEvaluation(DerivativePolynomialEvaluation, Matrix, Matrix, int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Fills row of system of equations for a derivative polynomial evaluation.
- fillDirectEvaluation(DirectPolynomialEvaluation, Matrix, Matrix, int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Fills row of system of equations for a direct polynomial evaluation.
- fillIntegralEvaluation(IntegralPolynomialEvaluation, Matrix, Matrix, int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Fills row of system of equations for an integral polynomial evaluation.
- fillIntegralIntervalEvaluation(IntegralIntervalPolynomialEvaluation, Matrix, Matrix, int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Fills row of system of equations for a polynomial evaluation of an interval integration.
- findQForRelativeError(double) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Finds required order of Padé approximant for provided maximum allowed relative error to be achieved.
- findQForTolerance(double, double) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Finds required order of Padé approximant for provided absolute error tolerance to be achieved.
- FirstDegreePolynomialRootsEstimator - Class in com.irurueta.numerical.roots
-
Class to estimate the root of a first degree polynomial along with other polynomial properties.
- FirstDegreePolynomialRootsEstimator() - Constructor for class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Empty constructor.
- FirstDegreePolynomialRootsEstimator(double[]) - Constructor for class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Constructor.
- fit() - Method in class com.irurueta.numerical.fitting.Fitter
-
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value
- fit() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
- fit() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
- fit() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
- fit() - Method in class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
-
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
- fit() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Fits a straight line following equation y = a + b*x to provided data (x, y) so that parameters associated a, b can be estimated along with their variances, covariance and chi square value.
- fit() - Method in class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
-
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
- fit() - Method in class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
-
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
- Fitter - Class in com.irurueta.numerical.fitting
-
Base class for function fitters used to estimate function parameters along with their covariance matrix and chi square value
- Fitter() - Constructor for class com.irurueta.numerical.fitting.Fitter
- FittingException - Exception in com.irurueta.numerical.fitting
-
Raised when a fitter fails to fit a function to provided data.
- FittingException() - Constructor for exception com.irurueta.numerical.fitting.FittingException
-
Constructor
- FittingException(String) - Constructor for exception com.irurueta.numerical.fitting.FittingException
-
Constructor with String containing message
- FittingException(String, Throwable) - Constructor for exception com.irurueta.numerical.fitting.FittingException
-
Constructor with message and cause
- FittingException(Throwable) - Constructor for exception com.irurueta.numerical.fitting.FittingException
-
Constructor with cause
- fitWithoutSig() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Fits data when standard deviations of input data is not provided.
- fitWithSig() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Fits data when standard deviations of input data is provided.
- fmin - Variable in class com.irurueta.numerical.optimization.MultiOptimizer
-
Function value at estimated minimum.
- fmin - Variable in class com.irurueta.numerical.optimization.SingleOptimizer
-
Function evaluation at minimum that has been found.
- fn - Variable in class com.irurueta.numerical.interpolation.RadialBasisFunctionInterpolator
-
Radial basis function defining a value based on the distance of two points.
- fprime(double[], double[], int, int, int) - Method in class com.irurueta.numerical.interpolation.CurveInterpolator
-
Utility for estimating the derivatives at the endpoints, x and y point to the abscissa and ordinate of the endpoint.
- frac - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Array containing values for Laguerre method.
- free(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Releases parameter at position i of linear combination of basis functions, so it can be modified again if needed.
- free(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Releases parameter at position i of linear combination of basis functions, so it can be modified again if needed.
- free(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Releases parameter at position i of linear combination of basis functions, so it can be modified again if needed.
- free(int) - Method in class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
-
Releases parameter at position i of linear combination of basis functions, so it can be modified again if needed.
- fret - Variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Value of the function at the minimum.
- fret - Variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Value of the function at the minimum.
- fret - Variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Value of the function at the minimum.
- fret - Variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
value of the function at the minimum.
- ftol - Variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
The fractional tolerance in the function value such that failure to decrease by more than this amount on one iteration signals doneness.
- func(double) - Method in class com.irurueta.numerical.integration.ExponentialMidPointQuadrature
-
Evaluates function at f(-log(x))/x.
- func(double) - Method in class com.irurueta.numerical.integration.InfinityMidPointQuadrature
-
Evaluates function at 1/x.
- func(double) - Method in class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadrature
-
Evaluates function at 2*x*f(a0+x^2).
- func(double) - Method in class com.irurueta.numerical.integration.MidPointQuadrature
-
Evaluates function at x.
- func(double) - Method in class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadrature
-
Evaluates function at 2*x*f(a0+x^2).
- func(double, Matrix) - Method in class com.irurueta.numerical.integration.ExponentialMidPointMatrixQuadrature
-
Evaluates function at f(-log(x))/x.
- func(double, Matrix) - Method in class com.irurueta.numerical.integration.InfinityMidPointMatrixQuadrature
-
Evaluates function at 1/x.
- func(double, Matrix) - Method in class com.irurueta.numerical.integration.LowerSquareRootMidPointMatrixQuadrature
-
Evaluates function at 2*x*f(a0+x^2).
- func(double, Matrix) - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Evaluates matrix function at x.
- func(double, Matrix) - Method in class com.irurueta.numerical.integration.UpperSquareRootMidPointMatrixQuadrature
-
Evaluates function at 2*x*f(a0+x^2).
G
- gain - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
- gaussian - Variable in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Array containing the Gaussian values corresponding to each bin for a single sample.
- GaussianRadialBasisFunction - Class in com.irurueta.numerical.interpolation
-
Gaussian Radial Basis Function implementation.
- GaussianRadialBasisFunction() - Constructor for class com.irurueta.numerical.interpolation.GaussianRadialBasisFunction
-
Constructor.
- GaussianRadialBasisFunction(double) - Constructor for class com.irurueta.numerical.interpolation.GaussianRadialBasisFunction
-
Constructor.
- gaussianSigma - Variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Actual Gaussian sigma to be used on each sample when aggregating Gaussian functions centered at each input data sample value.
- getA() - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Returns estimated parameters of linear single dimensional function
- getA() - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Returns estimated parameters of linear single dimensional function.
- getA() - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Returns estimated parameters of linear single dimensional function.
- getA() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Returns estimated "a" parameter of line following equation y = a + b*x
- getA() - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Gets lower limit of integration.
- getA() - Method in class com.irurueta.numerical.integration.MidPointQuadrature
-
Gets lower limit of integration.
- getA() - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Gets lower limit of integration.
- getA() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadrature
-
Gets lower limit of integration.
- getAlgebraicDistance(DerivativePolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Computes algebraic distance of a derivative between provided polynomial and evaluation.
- getAlgebraicDistance(DirectPolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Computes algebraic distance of between provided polynomial and direct evaluation.
- getAlgebraicDistance(IntegralIntervalPolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Computes algebraic distance of an integration interval between provided polynomial and evaluation.
- getAlgebraicDistance(IntegralPolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Computes algebraic distance of an integral between provided polynomial and evaluation.
- getAlgebraicDistance(PolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Computes algebraic distance between provided polynomial and evaluation.
- getAlpha() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Returns curvature matrix.
- getAlpha() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Returns curvature matrix.
- getAlpha() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Returns curvature matrix.
- getArtifactId() - Method in class com.irurueta.numerical.BuildInfo
-
Obtains artifactId of this library.
- getB() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Returns estimated "b" parameter of line following equation y = a + b*x
- getB() - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Gets upper limit of integration.
- getB() - Method in class com.irurueta.numerical.integration.MidPointQuadrature
-
Gets upper limit of integration.
- getB() - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Gets upper limit of integration.
- getB() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadrature
-
Gets upper limit of integration.
- getBestInliersData() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Returns data related to inliers found for best result.
- getBestInliersData() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Returns data related to inliers found for best result.
- getBestInliersData() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Gets data related to inliers found for best result.
- getBestInliersData() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Gets data related to inliers found for best result.
- getBestMedianResidual() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
-
Returns best median of error found so far taking into account all provided samples.
- getBestMedianResidual() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
-
Returns best median of error found so far taking into account all provided samples.
- getBestMedianResidual() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Returns best median of error found so far taking into account all provided samples.
- getBestNumberInliersData() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Returns data related to solution producing the largest number of inliers.
- getBestResult() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Returns best solution that has been found so far during an estimation.
- getBestResult() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Returns best solution that has been found so far during an estimation.
- getBestResult() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Returns best solution that has been found so far during an estimation.
- getBestResult() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Returns best solution that has been found so far during an estimation.
- getBestResult() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Returns best solution that has been found so far during an estimation.
- getBestResultInliersData() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Returns data related to the best inliers found for best result.
- getBeta() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Returns beta, which is the probability that a match is declared inlier by mistake, i.e. the ratio of the "inlier" surface by the total surface.
- getBeta() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Returns beta, which is the probability that a match is declared inlier by mistake, i.e. the ratio of the "inlier" surface by the total surface.
- getBranch() - Method in class com.irurueta.numerical.BuildInfo
-
Obtains build branch.
- getBuildNumber() - Method in class com.irurueta.numerical.BuildInfo
-
Obtains build number.
- getBuildTimestamp() - Method in class com.irurueta.numerical.BuildInfo
-
Obtains build timestamp.
- getCacheSize() - Method in class com.irurueta.numerical.DoubleFactorialEstimator
-
Gets current cache size.
- getCacheSize() - Method in class com.irurueta.numerical.LongFactorialEstimator
-
Gets current cache size.
- getChi2() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Returns estimated chi square value.
- getChisq() - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Returns estimated chi square value of input data
- getChisq() - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Returns estimated chi square value of input data.
- getChisq() - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Returns estimated chi square value of input data.
- getChisqDegreesOfFreedom() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Returns degrees of freedom of computed chi square value.
- getChisqDegreesOfFreedom() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Returns degrees of freedom of computed chi square value.
- getChisqDegreesOfFreedom() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Returns degrees of freedom of computed chi square value.
- getColumns() - Method in interface com.irurueta.numerical.integration.DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener
-
Gets number of columns of matrix result of function f.
- getColumns() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Gets number of columns of quadrature result.
- getColumns() - Method in class com.irurueta.numerical.integration.MatrixQuadrature
-
Gets number of columns of quadrature result.
- getColumns() - Method in interface com.irurueta.numerical.integration.MatrixSingleDimensionFunctionEvaluatorListener
-
Gets number of columns of matrix result of function f.
- getColumns() - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Gets number of columns of quadrature result.
- getColumns() - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Gets number of columns of quadrature result.
- getCommit() - Method in class com.irurueta.numerical.BuildInfo
-
Obtains build commit.
- getConfidence() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Returns amount of confidence expressed as a value between 0.0 and 1.0 (which is equivalent to 100%).
- getConfidence() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Returns amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- getConfidence() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Returns amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- getConfidence() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Returns amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- getConfidence() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Returns amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- getConfidence() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Returns amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- getConstants() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Gets constant terms of integral.
- getConstants() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Gets constant terms of integral.
- getConstantValue() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Gets constant value to use during edge extension when CONSTANT_EDGE method is being used.
- getControlMatrix() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains the control matrix (B) (it is not used if there is no control).
- getControlParameters() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains the number of control vector dimensions (control parameters).
- getCovar() - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Returns covariance of estimated parameters of linear single dimensional function
- getCovar() - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Returns covariance of estimated parameters of linear single dimensional function.
- getCovar() - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Returns covariance of estimated parameters of linear single dimensional function.
- getD() - Method in class com.irurueta.numerical.interpolation.BarycentricRationalInterpolator
-
Gets order of desired approximation.
- getDegree() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Gets degree of polynomial to be estimated.
- getDegree() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Gets degree of polynomial to be estimated.
- getDegree() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Gets degree of polynomial.
- getDenominators() - Method in class com.irurueta.numerical.PadeApproximantEstimator.Result
-
Gets denominator coefficients.
- getDerivativeListener() - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Returns derivative listener to get function derivative.
- getDerivativeListener() - Method in class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
-
Returns derivative listener to evaluate a function's derivative.
- getDerivativeOrder() - Method in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
-
Gets order of derivative.
- getDirection() - Method in class com.irurueta.numerical.DirectionalEvaluator
-
Returns array indicating the direction of the line where the function is evaluated.
- getDirection() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Returns direction to start looking for a minimum.
- getDirection() - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Returns direction to start looking for a minimum.
- getDirections() - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Returns set of directions to start looking for a minimum.
- getDiscriminant(double[]) - Static method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Internal method to compute the discriminant of a 2nd degree polynomial.
- getDiscriminant(double[]) - Static method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Internal method to compute the discriminant of a 3rd degree polynomial.
- getDistance(PolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Computes geometric or algebraic distance between provided polynomial and evaluation.
- getDy() - Method in class com.irurueta.numerical.interpolation.PolynomialInterpolator
-
Gets an indication of the error of interpolation on the y values.
- getDy() - Method in class com.irurueta.numerical.interpolation.RationalInterpolator
-
Gets an indication of the error of interpolation on the y values.
- getDynamicParameters() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains the number of state vector dimensions (dynamic parameters).
- getEdgeMethod() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Gets edge extension method to use during convolution when parts of the kernel are required to lie outside the signal's boundaries.
- getEndX() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Gets end point of interval being integrated.
- getErrorCovPost() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains the posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k).
- getErrorCovPre() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains the priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q).
- getEstimatedThreshold() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
-
Returns estimated threshold to determine whether samples are inliers or not.
- getEstimatedThreshold() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Returns estimated threshold to determine whether samples are inliers or not.
- getEta0() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Return eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
- getEta0() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Return eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
- getEvaluation() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
-
Gets evaluation of polynomial at point x.
- getEvaluationAtMax() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Returns single dimension function evaluation at provided or computed maximum evaluation point where the bracket finishes.
- getEvaluationAtMiddle() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Returns single dimension function evaluation at provided or computed middle evaluation point within the bracket.
- getEvaluationAtMin() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Returns single dimension function evaluation at provided or computed minimum evaluation point where the bracket starts.
- getEvaluationAtResult() - Method in class com.irurueta.numerical.optimization.MultiOptimizer
-
Returns function evaluation at estimated minimum point.
- getEvaluationAtResult() - Method in class com.irurueta.numerical.optimization.SingleOptimizer
-
Returns function evaluation at minimum that has been found.
- getEvaluations() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Gets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
- getEvaluations() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Gets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
- getEvaluationsAtSimplex() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Returns function evaluations at simplex points or vertices.
- getExtrema() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Gets location of minima or maxima (i.e. extrema) in this polynomial.
- getExtrema(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Gets location of minima or maxima (i.e. extrema) in this polynomial.
- getFunctionEvaluator() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Returns function evaluator to evaluate function at a given point and obtain function derivatives respect to each provided parameter.
- getFunctionEvaluator() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Returns function evaluator to evaluate function at a given point and obtain function jacobian respect to each provided parameter.
- getFunctionEvaluator() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Returns function evaluator to evaluate function at a given point and obtain function derivatives respect to each provided parameter
- getFunctionEvaluator() - Method in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Returns function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point
- getFunctionEvaluator() - Method in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Returns function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point.
- getGain() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains the Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R).
- getGaussianSigma() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Returns Gaussian sigma to be used on each sample when aggregating Gaussian functions centered at each input data sample value.
- getGeometricDistance(DirectPolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Computes distance of evaluation respect to provided polynomial in a geometric sense by computing a tangent line to polynomial at point x and comparing the distance of such line to provided evaluation point.
- getGeometricOrAlgebraicDistance(PolynomialEvaluation, Polynomial) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Commutes distance of evaluation respect to provided polynomial in a geometric sense if evaluation is direct, otherwise returns algebraic distance.
- getGradientListener() - Method in class com.irurueta.numerical.DirectionalDerivativeEvaluator
-
Returns gradient listener that evaluates a multidimensional function gradient.
- getGradientListener() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Returns gradient listener in charge of obtaining gradient values for the function to be evaluated.
- getGradientListener() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Returns gradient listener.
- getGradientListener() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Returns gradient listener in charge of obtaining gradient values for the function to be evaluated.
- getGroupId() - Method in class com.irurueta.numerical.BuildInfo
-
Obtains groupId of this library.
- getInlierFactor() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Returns factor to normalize or adjust threshold to determine inliers.
- getInlierFactor() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Returns factor to normalize or adjust threshold to determine inliers.
- getInliers() - Method in class com.irurueta.numerical.robust.InliersData
-
Returns efficient array indicating which samples are considered inliers and which ones aren't or null if inliers are not kept.
- getInliers() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
-
Returns efficient array indicating which samples are considered inliers and which ones aren't.
- getInliers() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
-
Returns efficient array indicating which samples are considered inliers and which ones aren't.
- getInliers() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Returns efficient array indicating which samples are considered inliers and which ones aren't.
- getInliers() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator.PROSACInliersData
-
Returns efficient array indicating which samples are considered inliers and which ones aren't.
- getInliers() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator.RANSACInliersData
-
Returns efficient array indicating which samples are considered inliers and which ones aren't.
- getInliersData() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Returns data about inliers once estimation has been done.
- getInliersData() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Returns data about inliers once estimation has been done.
- getInliersData() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Returns data about inliers once estimation has been done.
- getInliersData() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Returns data about inliers once estimation has been done.
- getInliersData() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Returns data about inliers once estimation has been done.
- getInliersData() - Method in class com.irurueta.numerical.robust.RobustEstimator
-
Returns data about inliers once estimation has been done.
- getInliersLMedS() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Returns inliers considering LMedS model.
- getInliersMSAC() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Returns inliers considering MSAC model.
- getInputData() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Returns array containing input data to be used to find the most likely value.
- getInstance() - Static method in class com.irurueta.numerical.BuildInfo
-
Obtains singleton instance.
- getIntegralOrder() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Gets integral order.
- getIntegralOrder() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Gets integral order.
- getIntegratorType() - Method in class com.irurueta.numerical.integration.Integrator
-
Gets type of integrator.
- getIntegratorType() - Method in class com.irurueta.numerical.integration.MatrixIntegrator
-
Gets type of integrator.
- getIntegratorType() - Method in class com.irurueta.numerical.integration.QuadratureIntegrator
-
Gets type of integrator.
- getIntegratorType() - Method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Gets type of integrator.
- getIntegratorType() - Method in class com.irurueta.numerical.integration.RombergIntegrator
-
Gets type of integrator.
- getIntegratorType() - Method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Gets type of integrator.
- getIntegratorType() - Method in class com.irurueta.numerical.integration.SimpsonIntegrator
-
Gets type of integrator.
- getIntegratorType() - Method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Gets type of integrator.
- getIterations() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Return number of iterations that were needed to estimate a minimum.
- getIterations() - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Return number of iterations that were needed to estimate a minimum.
- getIterations() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Return number of iterations that were needed to estimate a minimum.
- getItmax() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Returns maximum number of iterations.
- getItmax() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Returns maximum number of iterations.
- getItmax() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Returns maximum number of iterations.
- getKernel() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Gets kernel to convolve the signal with.
- getKernelCenter() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Gets position of kernel center.
- getLastErr() - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Gets most recently computed error.
- getLastVal() - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Gets most recently computed interpolated value.
- getListener() - Method in class com.irurueta.numerical.DirectionalEvaluator
-
Returns listener to evaluate a multidimensional function.
- getListener() - Method in class com.irurueta.numerical.optimization.MultiOptimizer
-
Returns listener to evaluate a multidimensional function
- getListener() - Method in class com.irurueta.numerical.optimization.SingleOptimizer
-
Returns listener to evaluate a single dimension function.
- getListener() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Gets listener to be notified of events such as when estimation starts, ends or estimation progress changes.
- getListener() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Gets listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
- getListener() - Method in class com.irurueta.numerical.robust.RobustEstimator
-
Returns reference to listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
- getListener() - Method in class com.irurueta.numerical.roots.SingleRootEstimator
-
Returns listener that evaluates a single dimension function in order to find its root.
- getListener() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Gets listener in charge of attending events generated by this instance.
- getM() - Method in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
-
Gets length of x1v array.
- getM() - Method in class com.irurueta.numerical.interpolation.BilinearInterpolator
-
Gets length of x1v array.
- getM() - Method in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Gets length of x1v array.
- getMaxEvaluationPoint() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Returns maximum evaluation point whether the bracket finishes.
- getMaxEvaluationPoint() - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Returns largest value inside the bracket of values where the root will be searched.
- getMaxEvaluations() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Returns maximum number of evaluations to be weighted and taken into account.
- getMaxima() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Gets location of maxima in this polynomial.
- getMaxima(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Gets location of maxima in this polynomial.
- getMaxIterations() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Returns maximum allowed number of iterations.
- getMaxIterations() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Maximum allowed number of iterations.
- getMaxIterations() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Maximum allowed number of iterations.
- getMaxIterations() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Maximum allowed number of iterations.
- getMaxIterations() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Maximum allowed number of iterations.
- getMaxIterations() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Maximum allowed number of iterations.
- getMaxOutliersProportion() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Returns maximum allowed outliers proportion in the input data.
- getMaxOutliersProportion() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Returns maximum allowed outliers proportion in the input data.
- getMaxValue() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Returns maximum value found on provided input data array.
- getMeasurementMatrix() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains measurement matrix (H).
- getMeasurementNoiseCov() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains the measurement noise covariance matrix (R).
- getMeasurementNoiseCov() - Method in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
Obtains estimated measurement noise covariance matrix.
- getMeasureParameters() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains the number of measurement vector dimensions (measure parameters).
- getMeasureParams() - Method in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
Obtains the number of measurement vector dimensions (measure parameters).
- getMethod() - Method in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Returns method to be used for maximum likelihood estimation, which for this class is MaximumLikelihoodEstimatorMethod.
- getMethod() - Method in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Returns method to be used for maximum likelihood estimation, which for this class is MaximumLikelihoodEstimatorMethod.
- getMethod() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Returns method to be used for maximum likelihood estimation on subclasses of this class.
- getMethod() - Method in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Returns method being used for robust estimation.
- getMethod() - Method in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Returns method being used for robust estimation.
- getMethod() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Returns method being used for robust estimation.
- getMethod() - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Returns method being used for robust estimation.
- getMethod() - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Returns method being used for robust estimation.
- getMethod() - Method in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Returns method being used for robust estimation.
- getMethod() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Returns method being used for robust estimation.
- getMethod() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Returns method being used for robust estimation.
- getMethod() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Returns method being used for robust estimation.
- getMethod() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Returns method being used for robust estimation.
- getMethod() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Returns method being used for robust estimation.
- getMethod() - Method in class com.irurueta.numerical.robust.RobustEstimator
-
Returns method being used for robust estimation.
- getMiddleEvaluationPoint() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Returns middle evaluation point within the bracket.
- getMinEvaluationPoint() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Returns minimum evaluation point where the bracket starts
- getMinEvaluationPoint() - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Returns smallest value inside the bracket of values where the root will be searched.
- getMinima() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Gets location of minima in this polynomial.
- getMinima(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Gets location of minima in this polynomial.
- getMinNumberOfEvaluations() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Gets minimum number of evaluations required to estimate a polynomial of the specified degree.
- getMinNumberOfEvaluations() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Gets minimum number of evaluations required to estimate a polynomial of the specified degree.
- getMinNumberOfEvaluations(int) - Static method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Gets minimum number of evaluations required to estimate a polynomial of the specified degree.
- getMinValue() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Returns minimum value found on provided input data array.
- getMm() - Method in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Gets number of rows of sub-block of ym values to be processed.
- getMse() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Gets mean square error produced by estimated parameters respect to provided sample data.
- getMse() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Gets mean square error produced by estimated parameters respect to provided sample data.
- getMse() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Gets mean square error produced by estimated parameters respect to provided sample data.
- getN() - Method in class com.irurueta.numerical.integration.MatrixQuadrature
-
Gets current level of refinement.
- getN() - Method in class com.irurueta.numerical.integration.Quadrature
-
Gets current level of refinement.
- getN() - Method in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
-
Gets length of x2v array.
- getN() - Method in class com.irurueta.numerical.interpolation.BilinearInterpolator
-
Gets length of x2v array.
- getN() - Method in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Gets length of x2v array.
- getNdim() - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Gets number of dimensions of each point.
- getNdone() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Returns convergence parameter.
- getNdone() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Returns convergence parameter.
- getNdone() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Returns convergence parameter.
- getNIters() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Returns number of iterations to be done to obtain required confidence.
- getNIters() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Returns number of iterations to be done to obtain required confidence.
- getNIters() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Returns number of iterations to be done to obtain required confidence.
- getNIters() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Returns number of iterations to be done to obtain required confidence.
- getNIters() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Returns number of iterations to be done to obtain required confidence.
- getNn() - Method in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Gets number of columns of sub-block of ym values to be processed.
- getNpt() - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Gets number of provided points.
- getNumberOfBins() - Method in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Returns number of bins to be used on the histogram.
- getNumberOfDimensions() - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFunctionEvaluator
-
Number of dimensions of points (i.e. length of arrays) evaluated by this function evaluator.
- getNumberOfDimensions() - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFunctionEvaluator
-
Number of dimensions of points (i.e. length of input points arrays) evaluated by this function evaluator
- getNumberOfDimensions() - Method in interface com.irurueta.numerical.fitting.LinearFitterMultiDimensionFunctionEvaluator
-
Number of dimensions of points (i.e. length of arrays) evaluated by this function evaluator
- getNumberOfVariables() - Method in interface com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFunctionEvaluator
-
Number of variables of function f.
- getNumberOfVariables() - Method in interface com.irurueta.numerical.MultiVariateFunctionEvaluatorListener
-
Number of variables of function f.
- getNumerators() - Method in class com.irurueta.numerical.PadeApproximantEstimator.Result
-
Gets numerator coefficients.
- getNumInliers() - Method in class com.irurueta.numerical.robust.InliersData
-
Returns number of inliers found.
- getNumSamples() - Method in class com.irurueta.numerical.robust.SubsetSelector
-
Returns number of samples to select subsets from.
- getNumSelected() - Method in class com.irurueta.numerical.robust.WeightSelection
-
Returns number of correspondences that have been selected.
- getOnIterationCompletedListener() - Method in class com.irurueta.numerical.optimization.Optimizer
-
Gets listener to handle minimization events.
- getP() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Gets the probability of finding a smaller chi square value.
- getP() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Gets the probability of finding a smaller chi square value.
- getP() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Gets the probability of finding a smaller chi square value.
- getPoint() - Method in class com.irurueta.numerical.DirectionalEvaluator
-
Returns point used as a reference to determine the function's input parameters along a line.
- getPolynomialParameters() - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
This method will always raise a NotAvailableException because this class only supports REAL polynomial parameters.
- getPolynomialParameters() - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
-
Returns array containing polynomial parameters.
- getPolynomialParameters() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
This method will always raise a NotAvailableException because this class only supports REAL polynomial parameters
- getPolynomialParameters() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
This method will always raise a NotAvailableException because this class only supports REAL polynomial parameters.
- getPolyParams() - Method in class com.irurueta.numerical.ComplexPolynomialEvaluator
-
Gets polynomial parameters.
- getPolyParams() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Gets array defining parameters of polynomial.
- getPolyParams() - Method in class com.irurueta.numerical.RealPolynomialEvaluator
-
Gets polynomial parameters.
- getProcessNoiseCov() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains the process noise covariance matrix (Q).
- getProgressDelta() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Returns amount of progress variation before notifying a progress change during estimation.
- getProgressDelta() - Method in class com.irurueta.numerical.robust.RobustEstimator
-
Returns amount of progress variation before notifying a progress change during estimation.
- getPsum(Matrix, double[]) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Computes the sum of the elements of each matrix column.
- getQ() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Gets a measure of quality of estimated fit as a value between 0.0 and 1.0.
- getQ() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Gets a measure of quality of estimated fit as a value between 0.0 and 1.0.
- getQ() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Gets a measure of quality of estimated fit as a value between 0.0 and 1.0.
- getQ() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Returns estimated goodness-of-fit probability (i.e. that the fit would have a chi square value equal or larger than the estimated one).
- getQuadratureType() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.InfinityMidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.InfinityMidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.Integrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.MatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.MidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.MidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergExponentialMidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergExponentialMidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergInfinityMidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergInfinityMidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergLowerSquareRootMidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergLowerSquareRootMidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergMidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergMidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergUpperSquareRootMidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.RombergUpperSquareRootMidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonInfinityMidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonInfinityMidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonLowerSquareRootMidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonLowerSquareRootMidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonMidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonMidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonTrapezoidalQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonTrapezoidalQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonUpperSquareRootMidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.SimpsonUpperSquareRootMidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadratureIntegrator
-
Gets type of quadrature.
- getQuadratureType() - Method in class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadratureMatrixIntegrator
-
Gets type of quadrature.
- getQualityScores() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Returns quality scores corresponding to each polynomial evaluation.
- getQualityScores() - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Returns quality scores corresponding to each provided point.
- getQualityScores() - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Returns quality scores corresponding to each provided point.
- getQualityScores() - Method in interface com.irurueta.numerical.robust.PROSACRobustEstimatorListener
-
Returns quality scores corresponding to each sample.
- getRandomizer() - Method in class com.irurueta.numerical.robust.FastRandomSubsetSelector
-
Returns internal randomizer to generate uniformly distributed random values.
- getRealPolynomialParameters() - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Returns array of first degree polynomial parameters.
- getRealPolynomialParameters() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Returns array of second degree polynomial parameters.
- getRealPolynomialParameters() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Returns array of third degree polynomial parameters.
- getResiduals() - Method in class com.irurueta.numerical.robust.InliersData
-
Returns residuals obtained for each sample of data or null if residuals are not kept.
- getResult() - Method in class com.irurueta.numerical.optimization.MultiOptimizer
-
Returns minimum point that was found.
- getResult() - Method in class com.irurueta.numerical.optimization.SingleOptimizer
-
Returns value of the minimum that has been found.
- getRoot() - Method in class com.irurueta.numerical.roots.SingleRootEstimator
-
Returns estimated root for a single dimension function inside a given bracket of values.
- getRoots() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Gets roots of polynomial.
- getRoots() - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
-
Returns array of estimated polynomial roots.
- getRows() - Method in interface com.irurueta.numerical.integration.DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener
-
Gets number of rows of matrix result of function f.
- getRows() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Gets number of rows of quadrature result.
- getRows() - Method in class com.irurueta.numerical.integration.MatrixQuadrature
-
Gets number of rows of quadrature result.
- getRows() - Method in interface com.irurueta.numerical.integration.MatrixSingleDimensionFunctionEvaluatorListener
-
Gets number of rows of matrix result of function f.
- getRows() - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Gets number of rows of quadrature result.
- getRows() - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Gets number of rows of quadrature result.
- getS() - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Gets current value of integral.
- getS() - Method in class com.irurueta.numerical.integration.MidPointQuadrature
-
Gets current value of integral.
- getS() - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Gets current value of integral.
- getS() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadrature
-
Gets current value of integral.
- getSampleAverage() - Method in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
Obtains estimated sample average.
- getSampleCount() - Method in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
Obtains number of samples used for estimation.
- getSelected() - Method in class com.irurueta.numerical.robust.WeightSelection
-
Returns array indicating which correspondences have been selected (i.e. have a true value), and which ones hasn't (have a false value).
- getSig() - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Returns standard deviations of each pair of points (x,y).
- getSig() - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Returns standard deviations of each pair of points (x,y).
- getSig() - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Returns standard deviations of each pair of points (x,y).
- getSig() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Returns standard deviations of each pair of points (x,y).
- getSigA() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Returns estimated standard deviation of parameter "a".
- getSigB() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Returns estimated standard deviation of parameter "b".
- getSigdat() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Returns estimated standard deviation of provided input data.
- getSignal() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Gets signal to be convolved.
- getSignalValueConstant(double[], int, double) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Internal method to determine signal value even when a position outside its boundaries is requested for constant value edge extension.
- getSignalValueMirror(double[], int) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Internal method to determine signal value even when a position outside its boundaries is requested for mirror edge extension.
- getSignalValueRepeat(double[], int) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Internal method to determine signal value even when a position outside its boundaries is requested for repeat edge extension.
- getSignalValueZero(double[], int) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Internal method to determine signal value even when a position outside its boundaries is requested when zero edge extension is being used.
- getSimplex() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Returns current simplex.
- getStandardDeviation() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
-
Returns standard deviation of error among all provided samples respect to currently estimated result.
- getStandardDeviation() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Returns standard deviation of error among all provided samples respect to currently estimated result.
- getStartPoint() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Returns start point where algorithm will be started.
- getStartPoint() - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Returns start point where algorithm will be started.
- getStartPoint() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Returns start point where algorithm will be started.
- getStartX() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Gets start point of interval being integrated.
- getStatePost() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k)).
- getStatePre() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k).
- getStopThreshold() - Method in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Returns threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
- getStopThreshold() - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Returns threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
- getStopThreshold() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Returns threshold to be used to keep the algorithm iterating in case that best threshold is not small enough.
- getSubsetSize() - Method in interface com.irurueta.numerical.robust.LMedSRobustEstimatorListener
-
Returns size of subsets of samples to be selected.
- getThreshold() - Method in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Returns threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
- getThreshold() - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Returns threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
- getThreshold() - Method in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Returns threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
- getThreshold() - Method in interface com.irurueta.numerical.robust.RANSACRobustEstimatorListener
-
Threshold to determine whether samples are inliers or not.
- getTol() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Returns tolerance to reach convergence.
- getTol() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Returns tolerance to reach convergence.
- getTol() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Returns tolerance to reach convergence.
- getTol() - Method in class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
-
Returns tolerance to define convergence threshold for SVD.
- getTol() - Method in class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
-
Returns tolerance to define convergence threshold for SVD.
- getTolerance() - Method in class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Returns tolerance value, which is the accuracy to be obtained when a minimum is estimated.
- getTolerance() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Returns tolerance or accuracy to be expected on estimated local minimum.
- getTolerance() - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Returns tolerance value.
- getTolerance() - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Returns tolerance or accuracy to be expected on estimated local minimum.
- getTolerance() - Method in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
-
Returns tolerance value, which is the accuracy to be obtained when a minimum is estimated.
- getTolerance() - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Returns tolerance or accuracy to be expected on estimated local minimum.
- getTolerance() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Returns tolerance or accuracy to be expected on estimated local minimum.
- getTolerance() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Returns tolerance or accuracy to be expected on estimated local minimum.
- getTolerance() - Method in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
-
Returns tolerance to find a root.
- getTolerance() - Method in class com.irurueta.numerical.roots.BrentSingleRootEstimator
-
Returns tolerance value.
- getTolerance() - Method in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
-
Returns tolerance to find a root.
- getTolerance() - Method in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
-
Returns tolerance value.
- getTolerance() - Method in class com.irurueta.numerical.roots.RidderSingleRootEstimator
-
Returns tolerance value.
- getTolerance() - Method in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
-
Returns tolerance value.
- getTolerance() - Method in class com.irurueta.numerical.roots.SecantSingleRootEstimator
-
Returns tolerance value.
- getTotalSamples() - Method in interface com.irurueta.numerical.robust.LMedSRobustEstimatorListener
-
Returns total number of samples to be randomly processed.
- getTransitionMatrix() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Obtains the state transition matrix (A).
- getType() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.ExponentialMidPointMatrixQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.ExponentialMidPointQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.InfinityMidPointMatrixQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.InfinityMidPointQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.LowerSquareRootMidPointMatrixQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.MatrixQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.MidPointQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.Quadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.UpperSquareRootMidPointMatrixQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadrature
-
Gets type of quadrature.
- getType() - Method in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
-
Gets type of polynomial evaluation.
- getType() - Method in class com.irurueta.numerical.polynomials.estimators.DirectPolynomialEvaluation
-
Gets type of polynomial evaluation.
- getType() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Gets type of polynomial evaluation.
- getType() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Gets type of polynomial evaluation.
- getType() - Method in class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Returns type of polynomial estimator.
- getType() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Returns type of polynomial estimator.
- getType() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
-
Gets type of polynomial evaluation.
- getType() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Returns type of polynomial estimator.
- getType() - Method in class com.irurueta.numerical.robust.FastRandomSubsetSelector
-
Returns type of this subset selector.
- getType() - Method in class com.irurueta.numerical.robust.SubsetSelector
-
Returns type of this subset selector.
- getVersion() - Method in class com.irurueta.numerical.BuildInfo
-
Obtains version of this library.
- getWeights() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Returns array containing a weight amount for each polynomial evaluation.
- getX() - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Returns input points x where a multidimensional function f(x1, x2, ...)
- getX() - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Returns input points x where a multi variate function f(x1, x2, ...)
- getX() - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Returns input points x where function f(x) is evaluated.
- getX() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Returns array containing x coordinates of input data to be fitted to a straight line.
- getX() - Method in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
-
Gets point where polynomial derivative has been evaluated.
- getX() - Method in class com.irurueta.numerical.polynomials.estimators.DirectPolynomialEvaluation
-
Gets point where polynomial has been evaluated.
- getX() - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Gets point where nth-polynomial integral has been evaluated.
- getY() - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Returns result of evaluation of multidimensional function f(x) at provided x points.
- getY() - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Returns result of evaluation of multi variate function f(x) at provided x points.
- getY() - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Returns result of evaluation of linear single dimensional function f(x) at provided x points.
- getY() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Returns array containing y coordinates of input data to be fitted to a straight line.
- GLIMIT - Static variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
The maximum magnification allowed for a parabolic-fit step.
- GOLD - Static variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
The default ratio by which intervals are magnified and.
- GoldenSingleOptimizer - Class in com.irurueta.numerical.optimization
-
This class for a single dimensional function's local minimum.
- GoldenSingleOptimizer() - Constructor for class com.irurueta.numerical.optimization.GoldenSingleOptimizer
-
Empty constructor.
- GoldenSingleOptimizer(SingleDimensionFunctionEvaluatorListener, double, double, double, double) - Constructor for class com.irurueta.numerical.optimization.GoldenSingleOptimizer
-
Constructor.
- gradient(double[]) - Method in class com.irurueta.numerical.GradientEstimator
-
Returns the gradient of a multidimensional function at provided point.
- gradient(double[], double[]) - Method in class com.irurueta.numerical.GradientEstimator
-
Sets estimated gradient in provided result array of a multidimensional function at provided point.
- gradient(double[], double[]) - Method in class com.irurueta.numerical.SavitzkyGolayGradientEstimator
-
Sets estimated gradient in provided result array of a multidimensional function at provided point.
- gradient(double[], double[]) - Method in class com.irurueta.numerical.SymmetricGradientEstimator
-
Sets estimated gradient in provided result array of a multidimensional function at provided point.
- GradientEstimator - Class in com.irurueta.numerical
-
Class to estimate the gradient of a multidimensional function.
- GradientEstimator(MultiDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.GradientEstimator
-
Constructor.
- GradientFunctionEvaluatorListener - Interface in com.irurueta.numerical
-
Listener to evaluate/retrieve a multidimensional function's gradient.
- gradientListener - Variable in class com.irurueta.numerical.DirectionalDerivativeEvaluator
-
Listener to evaluate a multidimensional function's gradient.
- gradientListener - Variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Listener to obtain gradient values for the multi dimension function being evaluated.
- gradientListener - Variable in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Listener to evaluate the function's gradient.
- gradientListener - Variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Listener to obtain gradient values for the multi dimension function being evaluated.
- GROUP_ID_KEY - Static variable in class com.irurueta.numerical.BuildInfo
-
Key to obtain groupID of this library from properties file.
- groupId - Variable in class com.irurueta.numerical.BuildInfo
-
GroupId of this library.
- GTOL - Static variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Convergence criterion for the zero gradient test.
- GTOL - Static variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Convergence criterion for the zero gradient test.
H
- h - Variable in class com.irurueta.numerical.integration.RombergIntegrator
-
Successive trapezoidal step sizes.
- h - Variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Successive trapezoidal step sizes.
- h - Variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
-
Successive trapezoidal step sizes.
- h - Variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
-
Successive trapezoidal step sizes.
- hasDoubleRoot() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Returns boolean indicating whether this second degree polynomial has multiple roots (for the 2nd degree case this means 2 equal roots) This is true for polynomials of the form (x - r)^2 = x^2 - 2 * r * x + r^2, where r is the double root
- hasDoubleRoot(double[]) - Static method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Returns boolean indicating whether a second degree polynomial has multiple roots (for the 2nd degree case this means 2 equal roots) This is true for polynomials of the form (x - r)^2 = x^2 - 2 * r * x + r^2, where r is the double root
- hasMultipleRealRoot() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Returns boolean indicating whether the polynomial has two real and equal roots and a third different one (multiplicity 2), or all three roots are real and equal (multiplicity 3).
- hasMultipleRealRoot(double[]) - Static method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Returns boolean indicating whether the polynomial has two real and equal roots and a third different one (multiplicity 2), or all three roots are real and equal (multiplicity 3).
- hasOneRealRootAndTwoComplexConjugateRoots() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Returns boolean indicating whether the polynomial has one real root and two complex conjugate roots.
- hasOneRealRootAndTwoComplexConjugateRoots(double[]) - Static method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Returns boolean indicating whether the polynomial has one real root and two complex conjugate roots.
- hasThreeDistinctRealRoots() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Returns boolean indicating whether the roots of the polynomial are three distinct and real roots or not.
- hasThreeDistinctRealRoots(double[]) - Static method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Returns boolean indicating whether the roots of the polynomial are three distinct and real roots or not.
- hasTwoComplexConjugateRoots() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Returns boolean indicating whether the roots of the polynomial are two complex conjugate roots or not.
- hasTwoComplexConjugateRoots(double[]) - Static method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Returns boolean indicating whether the roots of the polynomial are two complex conjugate roots or not.
- hasTwoDistinctRealRoots() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Returns boolean indicating whether the roots of the polynomial are two distinct and real roots or not.
- hasTwoDistinctRealRoots(double[]) - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Returns boolean indicating whether the roots of the polynomial are two distinct and real roots or not.
- HISTOGRAM_MAXIMUM_LIKELIHOOD_ESTIMATOR - Enum constant in enum class com.irurueta.numerical.MaximumLikelihoodEstimatorMethod
-
MLE method based on a histogram of all samples.
- HistogramMaximumLikelihoodEstimator - Class in com.irurueta.numerical
-
Class to estimate the most likely value from a series of samples assumed to be normally distributed.
- HistogramMaximumLikelihoodEstimator() - Constructor for class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Empty constructor.
- HistogramMaximumLikelihoodEstimator(double[], double, int) - Constructor for class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Constructor.
- HistogramMaximumLikelihoodEstimator(double, double, double[], double, int) - Constructor for class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Constructor.
- HistogramMaximumLikelihoodEstimator(double, int) - Constructor for class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Constructor.
- hmax - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Maximum step size.
- hmax - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
-
Maximum step size.
- hold(int, double) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Prevents parameter at position i of linear combination of basis functions to be modified during function fitting.
- hold(int, double) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Prevents parameter at position i of linear combination of basis functions to be modified during function fitting.
- hold(int, double) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Prevents parameter at position i of linear combination of basis functions to be modified during function fitting.
- hold(int, double) - Method in class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
-
Prevents parameter at position i of linear combination of basis functions to be modified during function fitting.
- hunt(double) - Method in class com.irurueta.numerical.interpolation.BaseInterpolator
-
Given a value x, returns a value j such that x is (insofar as possible) centered in the subrange xx[j..j+mm-1], where xx is the stored array.
I
- ia - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Determines which parameters can be modified during estimation (if true) and which ones are locked (if false).
- ia - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Determines which parameters can be modified during estimation (if true) and which ones are locked (if false).
- ia - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Determines which parameters can be modified during estimation (if true) and which ones are locked (if false).
- ia - Variable in class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
-
Determines which parameters can be modified during estimation (if true) and which ones are locked (if false)
- imin(int, int, double) - Static method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Non randomness states that i-m (where i is the cardinal of the set of inliers for a wrong model) follows the binomial distribution B(n,beta).
- imin(int, int, double) - Static method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Non randomness states that i-m (where i is the cardinal of the set of inliers for a wrong model) follows the binomial distribution B(n,beta).
- improvedX - Variable in class com.irurueta.numerical.PadeApproximantEstimator
-
Improved LU solution in one iteration.
- improveLuSolve(Matrix, Matrix, Matrix, Matrix) - Method in class com.irurueta.numerical.PadeApproximantEstimator
-
One step to iteratively improve LU solve solution.
- improveTimes - Variable in class com.irurueta.numerical.PadeApproximantEstimator
-
Number of times to iteratively improve LU decomposition.
- INFINITY_MID_POINT - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
-
Infinity mid-point.
- InfinityMidPointMatrixQuadrature - Class in com.irurueta.numerical.integration
-
This is an exact replacement for MidPointQuadrature i.e., returns the nth stage of refinement of the integral of a function from "a" to "b", except that the function is evaluated at evenly spaced points in 1=x rather than in "x".
- InfinityMidPointMatrixQuadrature(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.InfinityMidPointMatrixQuadrature
-
Constructor.
- InfinityMidPointQuadrature - Class in com.irurueta.numerical.integration
-
This is an exact replacement for MidPointQuadrature i.e., returns the nth stage of refinement of the integral of a function from "a" to "b", except that the function is evaluated at evenly spaced points in 1=x rather than in x.
- InfinityMidPointQuadrature(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.InfinityMidPointQuadrature
-
Constructor.
- InfinityMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using an infinity mid-point quadrature.
- InfinityMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.InfinityMidPointQuadratureIntegrator
-
Constructor.
- InfinityMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.InfinityMidPointQuadratureIntegrator
-
Constructor.
- InfinityMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes matrix (multivariate) function integration by using an infinity mid-point quadrature.
- InfinityMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.InfinityMidPointQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- InfinityMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.InfinityMidPointQuadratureMatrixIntegrator
-
Constructor.
- initialize(int) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Initializes matrices being reused as long as number of rows is preserved for multiple provided input matrices for efficiency purposes.
- initialize(int) - Method in class com.irurueta.numerical.PadeApproximantEstimator
-
Initializes required matrices.
- inlierFactor - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Factor to normalize threshold to determine inliers.
- inlierFactor - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Factor to normalize threshold to determine inliers.
- inliers - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
-
Efficiently stores which samples are considered inliers and which ones aren't.
- inliers - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
-
Efficiently stores which samples are considered inliers and which ones aren't.
- inliers - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator.PROSACInliersData
-
Efficiently stores which samples are considered inliers and which ones aren't.
- inliers - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator.RANSACInliersData
-
Efficiently stores which samples are considered inliers and which ones aren't.
- InliersData - Class in com.irurueta.numerical.robust
-
Base class defining inlier data for a robust estimator.
- InliersData() - Constructor for class com.irurueta.numerical.robust.InliersData
- inliersLmeds - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Inliers considering LMedS model.
- inliersMsac - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Inliers considering MSAC model.
- inputData - Variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Array containing input data to be used to find the most likely value.
- INTEGRAL_EVALUATION - Enum constant in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
-
Evaluation of the nth-integral of a polynomial (assuming a given constant value)
- INTEGRAL_INTERVAL - Enum constant in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
-
Interval nth-integration of a polynomial.
- IntegralIntervalPolynomialEvaluation - Class in com.irurueta.numerical.polynomials.estimators
-
Contains an evaluation of an interval of the nth-integral of a polynomial.
- IntegralIntervalPolynomialEvaluation() - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Constructor.
- IntegralIntervalPolynomialEvaluation(double, double, double) - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Constructor.
- IntegralIntervalPolynomialEvaluation(double, double, double, int) - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Constructor.
- integralOrder - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Order of integral.
- integralOrder - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Order of integral.
- IntegralPolynomialEvaluation - Class in com.irurueta.numerical.polynomials.estimators
-
Contains an evaluation of the nth-integral of a polynomial and the point where such integral has been evaluated.
- IntegralPolynomialEvaluation() - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Constructor.
- IntegralPolynomialEvaluation(double, double) - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Constructor.
- IntegralPolynomialEvaluation(double, double, double[]) - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Constructor.
- IntegralPolynomialEvaluation(double, double, double[], int) - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Constructor.
- IntegralPolynomialEvaluation(double, double, int) - Constructor for class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Constructor.
- integrate() - Method in class com.irurueta.numerical.integration.Integrator
-
Integrates function between provided lower and upper limits.
- integrate() - Method in class com.irurueta.numerical.integration.QuadratureIntegrator
-
Integrates function between provided lower and upper limits.
- integrate() - Method in class com.irurueta.numerical.integration.RombergIntegrator
-
Integrates function between lower and upper limits defined by provided quadrature.
- integrate() - Method in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
-
Integrates function between lower and upper limits defined by provided quadrature.
- integrate() - Method in class com.irurueta.numerical.integration.SimpsonIntegrator
-
Integrates function between provided lower and upper limits.
- integrate(Matrix) - Method in class com.irurueta.numerical.integration.MatrixIntegrator
-
Integrates function between provided lower and upper limits.
- integrate(Matrix) - Method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Integrates function between provided lower and upper limits.
- integrate(Matrix) - Method in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Integrates function between provided lower and upper limits.
- integrate(Matrix) - Method in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
-
Integrates function between provided lower and upper limits.
- integrate(Matrix) - Method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Integrates function between provided lower and upper limits.
- integrateInterval(double, double) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Integrate polynomial within provided interval.
- integration() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Updates this instance to contain its integration using a zero constant term.
- integration(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Updates this instance to contain its integration.
- integration(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes polynomial containing the integration of current one and assuming a zero constant term.
- integration(Polynomial, double) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes polynomial containing the integration of current one.
- integrationAndReturnNew() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes polynomial containing the integration of current one and assuming a zero constant term.
- integrationAndReturnNew(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes polynomial containing the integration of current one.
- IntegrationException - Exception in com.irurueta.numerical.integration
-
Exception raised when function integration fails.
- IntegrationException() - Constructor for exception com.irurueta.numerical.integration.IntegrationException
-
Constructor.
- IntegrationException(String) - Constructor for exception com.irurueta.numerical.integration.IntegrationException
-
Constructor with String containing message.
- IntegrationException(String, Throwable) - Constructor for exception com.irurueta.numerical.integration.IntegrationException
-
Constructor with message and cause.
- IntegrationException(Throwable) - Constructor for exception com.irurueta.numerical.integration.IntegrationException
-
Constructor with cause.
- Integrator - Class in com.irurueta.numerical.integration
-
Integrates single dimension functions over a specified interval.
- Integrator() - Constructor for class com.irurueta.numerical.integration.Integrator
- IntegratorType - Enum Class in com.irurueta.numerical.integration
-
Indicates type of integrator.
- IntegratorType() - Constructor for enum class com.irurueta.numerical.integration.IntegratorType
- internalConvolveConstant(double[], double[], int, double, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Internal method to convolve signal using constant value edge extension method.
- internalConvolveMirror(double[], double[], int, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Internal method to convolve signal using a mirror extension method.
- internalConvolveRepeat(double[], double[], int, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Internal method to convolve signal using a repeat extension method.
- internalConvolveZero(double[], double[], int, double[], Convolver1D.Convolver1DListener) - Static method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Internal method to convolve signal using zero edge extension method.
- internalEstimator - Variable in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Internal maximum likelihood estimator based on the Histogram method.
- internalLaguer(Complex[], Complex, int[]) - Method in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Internal method to compute a root after decomposing and decreasing the degree of the polynomial.
- internalSetBracket(double, double) - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Internal method to set the bracket of values (i.e. range of values) where the root will be searched.
- internalSetBracket(double, double, double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Internal method to set a bracket of values.
- internalSetDegree(int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Internal method to set degree of polynomial to be estimated.
- internalSetEvaluations(List<PolynomialEvaluation>) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Sets list of polynomial evaluations.
- internalSetEvaluationsAndWeights(List<PolynomialEvaluation>, double[]) - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Internal method to set evaluations and weights.
- internalSetFunctionEvaluator(LevenbergMarquardtMultiDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Internal method to set function evaluator to evaluate function at a given point and obtain function derivatives respect to each provided parameter.
- internalSetFunctionEvaluator(LevenbergMarquardtMultiVariateFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Internal method to set function evaluator to evaluate function at a given point and obtain function jacobian respect to each provided parameter.
- internalSetFunctionEvaluator(LevenbergMarquardtSingleDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Internal method to set function evaluator to evaluate function at a given point and obtain function derivatives respect to each provided parameter
- internalSetFunctionEvaluator(LinearFitterMultiDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Internal method to set function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point
- internalSetFunctionEvaluator(LinearFitterSingleDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Internal method to set function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point.
- internalSetGaussianSigma(double) - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Internal method to set Gaussian sigma to be used on each sample when aggregating Gaussian functions centered at each input data sample value.
- internalSetMinMaxValues(double, double) - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Method to set internally minimum and maximum value found in input data array.
- internalSetNumberOfBins(int) - Method in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Internal method to set number of bins to be used on the histogram.
- internalSetPointAndDirections(double[], Matrix) - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Internal method to set start point and set of directions to start looking for minimum.
- internalSetPolynomialParameters(double[]) - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Internal method to set array of first degree polynomial parameters.
- internalSetPolynomialParameters(double[]) - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Internal method to set array of second degree polynomial parameters.
- internalSetPolynomialParameters(double[]) - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Internal method to set array of third degree polynomial parameters.
- internalSetPolynomialParameters(Complex[]) - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
This method will always raise an IllegalArgumentException because this class only supports REAL polynomial parameters.
- internalSetPolynomialParameters(Complex[]) - Method in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Internal method to set parameters of a polynomial, taking into account that a polynomial of degree n is defined as: p(x) = a0 * x^n + a1 * x^(n - 1) + ... a(n-1) * x + an then the array of parameters is [an, a(n - 1), ... a1, a0] Polynomial parameters can be either real or complex values This method does not check if this class is locked.
- internalSetPolynomialParameters(Complex[]) - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
-
Internal method to set parameters of a polynomial, taking into account that a polynomial of degree n is defined as: p(x) = a0 * x^n + a1 * x^(n - 1) + ... a(n-1) * x + an then the array of parameters is [a0, a1, ... a(n - 1), an] This method does not check if this class is locked.
- internalSetPolynomialParameters(Complex[]) - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
This method will always raise an IllegalArgumentException because this class only supports REAL polynomial parameters
- internalSetPolynomialParameters(Complex[]) - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
This method will always raise an IllegalArgumentException because this class only supports REAL polynomial parameters.
- internalSetQualityScores(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Sets quality scores corresponding to each provided polynomial evaluation.
- internalSetQualityScores(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Sets quality scores corresponding to each provided polynomial evaluation.
- internalSetSimplex(double[], double) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Internal method to set a simplex as a central point and a set of surrounding points at distance delta.
- internalSetSimplex(double[], double[]) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Internal method to set a simplex defined as a central point and a set of surrounding points at their corresponding distance deltas[i], where "i" corresponds to one position of provided array of distances.
- internalSetSimplex(Matrix) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Internal method to Set simplex as a matrix containing on each row a point of the simplex.
- internalSetStartPoint(double[]) - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Internal method to set start point where local minimum is searched nearby.
- internalSetStartPoint(double[]) - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Internal method to set start point where local minimum is searched nearby.
- internalSetStartPointAndDirection(double[], double[]) - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Internal method to set start point and direction to start the search for a local minimum.
- internalSetStartPointAndDirection(double[], double[]) - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Internal method to set start point and direction to start the search for a local minimum.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Internal method to set algorithm tolerance.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Internal method to set tolerance or accuracy to be expected on estimated local minimum.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Internal method to set tolerance.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Internal method to set tolerance or accuracy to be expected on estimated local minimum.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
-
Internal method to set algorithm tolerance.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Internal method to set tolerance or accuracy to be expected on estimated local minimum.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Internal method to set tolerance or accuracy to be expected on estimated local minimum.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Internal method to set tolerance or accuracy to be expected on estimated local minimum.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
-
Internal method to set tolerance to find a root.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.BrentSingleRootEstimator
-
Internal method to set tolerance value.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
-
Internal method to set tolerance to find a root.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
-
Internal method to set tolerance value.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.RidderSingleRootEstimator
-
Internal method to set tolerance value.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
-
Internal method to set tolerance value.
- internalSetTolerance(double) - Method in class com.irurueta.numerical.roots.SecantSingleRootEstimator
-
Internal method to set tolerance value.
- interpolate(double) - Method in class com.irurueta.numerical.interpolation.BarycentricRationalInterpolator
-
Given a value x, returns an interpolated value, using data pointed to by
BaseInterpolator.xx
andBaseInterpolator.yy
. - interpolate(double) - Method in class com.irurueta.numerical.interpolation.BaseInterpolator
-
Given a value x, returns an interpolated value, using data pointed to by
BaseInterpolator.xx
andBaseInterpolator.yy
. - interpolate(double) - Method in class com.irurueta.numerical.interpolation.CurveInterpolator
-
Interpolates a point on the stored curve.
- interpolate(double[]) - Method in class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
-
Returns the interpolated function value at a dim-dimensional point pt.
- interpolate(double[]) - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Returns interpolated value at provided point.
- interpolate(double[]) - Method in class com.irurueta.numerical.interpolation.RadialBasisFunctionInterpolator
-
Returns the interpolated function value at a dim-dimensional point pt.
- interpolate(double[]) - Method in class com.irurueta.numerical.interpolation.ShepardInterpolator
-
Returns the interpolated function value at a dim-dimensional point pt.
- interpolate(double[], double[]) - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Returns interpolated value at provided point, and estimated error.
- interpolate(double, double) - Method in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
-
Given values x1p an x2p, returns an interpolated value.
- interpolate(double, double) - Method in class com.irurueta.numerical.interpolation.BilinearInterpolator
-
Given values x1p an x2p, returns an interpolated value.
- interpolate(double, double) - Method in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Given values x1p an x2p, returns an interpolated value.
- InterpolatingPolynomialEstimator - Class in com.irurueta.numerical.interpolation
-
Base class for interpolating polynomial estimators.
- InterpolatingPolynomialEstimator() - Constructor for class com.irurueta.numerical.interpolation.InterpolatingPolynomialEstimator
- InterpolationException - Exception in com.irurueta.numerical.interpolation
-
Exception raised when function interpolation fails.
- InterpolationException() - Constructor for exception com.irurueta.numerical.interpolation.InterpolationException
-
Constructor.
- InterpolationException(String) - Constructor for exception com.irurueta.numerical.interpolation.InterpolationException
-
Constructor with String containing message.
- InterpolationException(String, Throwable) - Constructor for exception com.irurueta.numerical.interpolation.InterpolationException
-
Constructor with message and cause.
- InterpolationException(Throwable) - Constructor for exception com.irurueta.numerical.interpolation.InterpolationException
-
Constructor with cause.
- interpolator - Variable in class com.irurueta.numerical.integration.RombergIntegrator
-
Polynomial interpolator.
- interpolator - Variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
-
Polynomial interpolator.
- InvalidBracketRangeException - Exception in com.irurueta.numerical
-
Exception raised when provided bracket of values is not valid.
- InvalidBracketRangeException() - Constructor for exception com.irurueta.numerical.InvalidBracketRangeException
-
Constructor.
- InvalidBracketRangeException(String) - Constructor for exception com.irurueta.numerical.InvalidBracketRangeException
-
Constructor with String containing message.
- InvalidBracketRangeException(String, Throwable) - Constructor for exception com.irurueta.numerical.InvalidBracketRangeException
-
Constructor with message and cause.
- InvalidBracketRangeException(Throwable) - Constructor for exception com.irurueta.numerical.InvalidBracketRangeException
-
Constructor with cause.
- InvalidSubsetRangeException - Exception in com.irurueta.numerical.robust
-
Raised if provided range of samples to pick subsets from is invalid.
- InvalidSubsetRangeException() - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetRangeException
-
Constructor.
- InvalidSubsetRangeException(String) - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetRangeException
-
Constructor with String containing message.
- InvalidSubsetRangeException(String, Throwable) - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetRangeException
-
Constructor with message and cause.
- InvalidSubsetRangeException(Throwable) - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetRangeException
-
Constructor with cause.
- InvalidSubsetSizeException - Exception in com.irurueta.numerical.robust
-
Raised if an invalid subset size is requested on a subset selector
- InvalidSubsetSizeException() - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetSizeException
-
Constructor.
- InvalidSubsetSizeException(String) - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetSizeException
-
Constructor with String containing message.
- InvalidSubsetSizeException(String, Throwable) - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetSizeException
-
Constructor with message and cause.
- InvalidSubsetSizeException(Throwable) - Constructor for exception com.irurueta.numerical.robust.InvalidSubsetSizeException
-
Constructor with cause.
- InverseMultiQuadricRadialBasisFunction - Class in com.irurueta.numerical.interpolation
-
Inverse Multi-quadric Radial Function Basis implementation.
- InverseMultiQuadricRadialBasisFunction() - Constructor for class com.irurueta.numerical.interpolation.InverseMultiQuadricRadialBasisFunction
-
Constructor.
- InverseMultiQuadricRadialBasisFunction(double) - Constructor for class com.irurueta.numerical.interpolation.InverseMultiQuadricRadialBasisFunction
-
Constructor.
- isBracketAvailable() - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Returns boolean indicating whether a bracket has been provided or computed and is available for retrieval.
- isBracketAvailable() - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Returns boolean indicating whether bracket has been set or not.
- isComputeAndKeepInliersEnabled() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Indicates whether inliers must be computed and kept.
- isComputeAndKeepInliersEnabled() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Indicates whether inliers must be computed and kept.
- isComputeAndKeepResidualsEnabled() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Indicates whether residuals must be computed and kept.
- isComputeAndKeepResidualsEnabled() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Indicates whether residuals must be computed and kept.
- isCovarianceAdjusted() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Indicates whether covariance must be adjusted or not.
- isCovarianceAdjusted() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Indicates whether covariance must be adjusted or not.
- isCovarianceAdjusted() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Indicates whether covariance must be adjusted or not.
- isDerivativeListenerAvailable() - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Returns boolean indicating whether derivative listener has been provided and is available for retrieval.
- isDerivativeListenerAvailable() - Method in class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
-
Returns boolean indicating whether the derivative listener has been provided and is available for retrieval.
- isDirectionAvailable() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Returns boolean indicating whether direction has already been provided and is ready for retrieval.
- isDirectionAvailable() - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Returns boolean indicating whether direction has already been provided and is ready for retrieval.
- isFirstDegree() - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Returns boolean indicating whether polynomial parameters provided to this instance correspond to a valid first degree polynomial.
- isFirstDegree(double[]) - Static method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Returns boolean indicating whether provided array of polynomial parameters correspond to a valid first degree polynomial.
- isGeometricDistanceUsed() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Indicates whether geometric distance will be used to find outliers or algebraic distance will be used instead.
- isGradientListenerAvailable() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Returns boolean indicating whether a gradient listener has already been provided and is available for retrieval.
- isGradientListenerAvailable() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Returns boolean indicating whether the gradient listener has been provided and is available for retrieval.
- isGradientListenerAvailable() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Returns boolean indicating whether a gradient listener has already been provided and is available for retrieval.
- isHistogramInitialSolutionUsed() - Method in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Returns boolean that indicates that an initial coarse solution will be computed first by using an internal HistogramMaximumLikelihoodEstimator in order to initialize the internal BrentSingleOptimizer to obtain a more accurate solution.
- isInputDataAvailable() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Returns boolean indicating whether input data has already been provided or not.
- isListenerAvailable() - Method in class com.irurueta.numerical.optimization.MultiOptimizer
-
Returns boolean indicating whether listener has been provided and is available for retrieval.
- isListenerAvailable() - Method in class com.irurueta.numerical.optimization.SingleOptimizer
-
Returns boolean indicating whether a listener has been provided and is available for retrieval.
- isListenerAvailable() - Method in class com.irurueta.numerical.robust.RobustEstimator
-
Indicates whether listener has been provided and is available for retrieval.
- isListenerAvailable() - Method in class com.irurueta.numerical.roots.SingleRootEstimator
-
Returns boolean indicating whether a listener has been provided.
- isLMedSInlierModelEnabled() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Returns boolean indicating whether LMedS or MSAC inlier model is enabled.
- isLMSESolutionAllowed() - Method in class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Indicates if an LMSE (Least Mean Square Error) solution is allowed if more evaluations than the required minimum are provided.
- isLocked() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Returns boolean indicating whether this instance is locked because some computations are being done.
- isLocked() - Method in class com.irurueta.numerical.optimization.Optimizer
-
Returns boolean indicating whether this instance is locked.
- isLocked() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Indicates whether this instance is locked.
- isLocked() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Indicates if this estimator is locked because an estimation is being computed.
- isLocked() - Method in class com.irurueta.numerical.robust.RobustEstimator
-
Indicates if this instance is locked because estimation is being computed.
- isLocked() - Method in class com.irurueta.numerical.roots.RootEstimator
-
Returns boolean indicating whether this instance is locked.
- isMedianResidualImproved() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
-
Returns boolean indicating whether median residual computed in current iteration has improved respect to previous iterations.
- isMedianResidualImproved() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
-
Returns boolean indicating whether median residual computed in current iteration has improved respect to previous iterations.
- isMedianResidualImproved() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Returns boolean indicating whether median residual computed in current iteration has improved respect to previous iterations.
- isPolakRibiereEnabled() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Returns boolean indicating whether Polak-Ribiere method is used or Fletcher-Reeves is used instead.
- isPolakRibiereEnabled() - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Returns boolean indicating whether Polak-Ribiere method is used or Fletcher-Reeves is used instead.
- isReady() - Method in class com.irurueta.numerical.fitting.Fitter
-
Indicates whether this instance is ready because enough input data has been provided to start the fitting process
- isReady() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Indicates whether provided instance has enough data to start the function fitting.
- isReady() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Indicates whether provided instance has enough data to start the function fitting.
- isReady() - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Indicates whether provided instance has enough data to start the function fitting.
- isReady() - Method in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Indicates whether provided instance has enough data to start the function fitting.
- isReady() - Method in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Indicates whether provided instance has enough data to start the function fitting.
- isReady() - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Indicates whether this instance is ready because enough input data has been provided to start the fitting process.
- isReady() - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Returns boolean indicating if enough parameters have been provided in order to start the computation of the maximum likelihood value.
- isReady() - Method in class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Returns boolean indicating whether this instance is ready to start the estimation of a minimum or not.
- isReady() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Returns boolean indicating whether this instance is ready to start the estimation of a local minimum.
- isReady() - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Returns boolean indicating whether this instance is ready to start the estimation of a local minimum.
- isReady() - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Returns boolean indicating whether this instance is ready to start the estimation of a local minimum.
- isReady() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Returns boolean indicating whether this instance is considered to be ready to start the estimation of a minimum.
- isReady() - Method in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
-
Returns boolean indicating whether this instance is ready to start the estimation of a minimum or not.
- isReady() - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Returns boolean indicating whether this instance is considered to be ready to start the estimation of a minimum.
- isReady() - Method in class com.irurueta.numerical.optimization.MultiOptimizer
-
Returns boolean indicating whether this instance is ready to start the estimation of a minimum.
- isReady() - Method in class com.irurueta.numerical.optimization.Optimizer
-
Returns boolean indicating whether this instance is ready.
- isReady() - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Returns boolean indicating whether this instance is ready to start the estimation of a local minimum.
- isReady() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Returns boolean indicating whether this instance is ready to start the estimation of a local minimum.
- isReady() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Returns boolean indicating whether this instance is ready to start the estimation of a local minimum.
- isReady() - Method in class com.irurueta.numerical.optimization.SingleOptimizer
-
Returns true if this instance is ready to start the minimum estimation, false otherwise.
- isReady() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Determines whether estimation is ready to start with the given data and required degree of polynomial to be estimated
- isReady() - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Determines whether estimation is ready to start with the given data and required degree of polynomial to be estimated.
- isReady() - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Indicates if estimator is ready to start the polynomial estimation.
- isReady() - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Indicates if estimator is ready to start the polynomial estimation.
- isReady() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Indicates if this estimator is ready to start the estimation.
- isReady() - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Indicates if estimator is ready to start the estimation process.
- isReady() - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Indicates if estimator is ready to start the estimation process.
- isReady() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Indicates if estimator is ready to start the estimation process.
- isReady() - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Indicates if estimator is ready to start the estimation process.
- isReady() - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Indicates if estimator is ready to start the estimation process.
- isReady() - Method in class com.irurueta.numerical.robust.RobustEstimator
-
Indicates if estimator is ready to start the estimation process.
- isReady() - Method in interface com.irurueta.numerical.robust.RobustEstimatorListener
-
Called to determine when a robust estimator is ready to start estimation.
- isReady() - Method in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
-
Returns boolean indicating whether this instance is ready to compute a root.
- isReady() - Method in class com.irurueta.numerical.roots.BrentSingleRootEstimator
-
Returns boolean indicating whether this instance is ready to start estimating a root.
- isReady() - Method in class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
-
Returns boolean indicating whether enough parameters have been provided in order to start the estimation of the roots of a function.
- isReady() - Method in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
-
Returns boolean indicating whether this instance is ready to compute a root.
- isReady() - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
-
Returns boolean indicating whether this instance is ready to start the estimation of the polynomial roots.
- isReady() - Method in class com.irurueta.numerical.roots.RidderSingleRootEstimator
-
Returns boolean indicating whether this instance is ready to start estimating a root.
- isReady() - Method in class com.irurueta.numerical.roots.RootEstimator
-
Returns boolean indicating whether enough parameters have been provided in order to start the estimation of the roots of a function.
- isReady() - Method in class com.irurueta.numerical.roots.SecantSingleRootEstimator
-
Returns boolean indicating whether this instance is ready to start estimating a root.
- isReady() - Method in class com.irurueta.numerical.roots.SingleRootEstimator
-
Returns boolean indicating whether enough parameters have been provided in order to start the estimation of the roots of a function.
- isReady() - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Indicates whether this instance is ready to start a convolution.
- isRealSolution() - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Returns boolean indicating whether estimated root is real.
- isResultAvailable() - Method in class com.irurueta.numerical.fitting.Fitter
-
Returns boolean indicating whether result has been estimated and is available for retrieval
- isResultAvailable() - Method in class com.irurueta.numerical.optimization.MultiOptimizer
-
Returns boolean indicating whether a minimum has been estimated and is available for retrieval.
- isResultAvailable() - Method in class com.irurueta.numerical.optimization.SingleOptimizer
-
Returns boolean indicating whether the estimated minimum is available for retrieval.
- isRootAvailable() - Method in class com.irurueta.numerical.roots.SingleRootEstimator
-
Returns boolean indicating whether a root has been estimated and is available for retrieval.
- isSecondDegree() - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Returns boolean indicating whether polynomial parameters provided to this instance correspond to a valid second degree polynomial.
- isSecondDegree(double[]) - Static method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Returns boolean indicating whether provided array of polynomial parameters correspond to a valid second degree polynomial.
- isSimplexAvailable() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Returns boolean indicating whether a simplex has been provided and is available for retrieval.
- isSortWeightsEnabled() - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Indicates if weights are sorted by so that largest weighted evaluations are used first.
- isStartPointAvailable() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Returns boolean indicating whether start point has already been provided and is ready for retrieval.
- isStartPointAvailable() - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Returns boolean indicating whether start point has already been provided and is ready for retrieval.
- isStartPointAvailable() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Returns boolean indicating whether start point has already been provided and is ready for retrieval.
- isStopThresholdEnabled() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Returns boolean indicating whether the algorithm must stop prematurely when dynamically computed threshold using median of residuals has a value lower than provided threshold in listener.
- isThirdDegree() - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Returns boolean indicating whether polynomial parameters provided to this instance correspond to a valid third degree polynomial.
- isThirdDegree(double[]) - Static method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Returns boolean indicating whether provided array of polynomial parameters correspond to a valid third degree polynomial.
- isUseInlierThresholds() - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Returns flag indicating whether thresholds to determine inliers are used, or if only median of residuals is used.
- iter - Variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Member contains number of iterations that were needed to estimate a minimum.
- iter - Variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Member contains number of iterations that were needed to estimate a minimum.
- iter - Variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Member contains number of iterations that were needed to estimate a minimum.
- iter - Variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Member contains number of iterations that were needed to estimate a minimum.
- iterationCompletedListener - Variable in class com.irurueta.numerical.optimization.Optimizer
-
Listener to handle minimization events.
- iters - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Number of iterations to be done to obtain required confidence.
- iters - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Number of iterations to be done to obtain required confidence.
- iters - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Number of iterations to be done to obtain required confidence.
- itmax - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Maximum number of iterations.
- itmax - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Maximum number of iterations.
- itmax - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Maximum number of iterations.
- ITMAX - Static variable in class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Is the maximum allowed number of iterations.
- ITMAX - Static variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Maximum allowed iterations.
- ITMAX - Static variable in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Maximum number of iterations to perform.
- ITMAX - Static variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Maximum allowed iterations.
- ITMAX - Static variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Maximum allowed iterations.
- ITMAX - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Maximum number of iterations.
- ITMAX - Static variable in class com.irurueta.numerical.roots.BrentSingleRootEstimator
-
Constant defining maximum number of iterations.
J
- jacobian - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Jacobian of function at a given point.
- jacobian(double[]) - Method in class com.irurueta.numerical.JacobianEstimator
-
Returns the Jacobian of a multivariate function at provided point.
- jacobian(double[], Matrix) - Method in class com.irurueta.numerical.JacobianEstimator
-
Sets estimated jacobian in provided result matrix of a multivariate function at provided point.
- JacobianEstimator - Class in com.irurueta.numerical
-
Class to estimate the Jacobian of a multi variate and multidimensional function.
- JacobianEstimator(MultiVariateFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.JacobianEstimator
-
Constructor.
- JMAX - Static variable in class com.irurueta.numerical.integration.QuadratureIntegrator
-
Maximum number of allowed steps.
- JMAX - Static variable in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Maximum number of allowed steps.
- JMAX - Static variable in class com.irurueta.numerical.integration.RombergIntegrator
-
Maximum number of allowed steps.
- JMAX - Static variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Maximum number of allowed steps.
- JMAX - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
-
Maximum number of allowed steps.
- JMAX - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
-
Maximum number of allowed steps.
- JMAX - Static variable in class com.irurueta.numerical.integration.SimpsonIntegrator
-
Maximum number of allowed steps.
- JMAX - Static variable in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Maximum number of allowed steps.
- JMAX - Static variable in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
-
Constant defining maximum number of iterations to estimate a root.
- JMAX - Static variable in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
-
Maximum number of iterations.
- JMAXP - Static variable in class com.irurueta.numerical.integration.RombergIntegrator
-
Maximum number of allowed steps + 1.
- JMAXP - Static variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Maximum number of allowed steps + 1.
- JMAXP - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
-
Maximum number of allowed steps + 1.
- JMAXP - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
-
Maximum number of allowed steps + 1.
- JMIN - Static variable in class com.irurueta.numerical.integration.QuadratureIntegrator
-
Minimum required number of steps.
- JMIN - Static variable in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Minimum required number of steps.
- JMIN - Static variable in class com.irurueta.numerical.integration.SimpsonIntegrator
-
Minimum required number of steps.
- JMIN - Static variable in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Minimum required number of steps.
- jsav - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
K
- K - Static variable in class com.irurueta.numerical.integration.RombergIntegrator
-
Minimum required number of steps.
- K - Static variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Minimum required number of steps.
- K - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
-
Minimum required number of steps.
- K - Static variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
-
Minimum required number of steps.
- KalmanFilter - Class in com.irurueta.numerical.signal.processing
-
Implementation of a Kalman filter.
- KalmanFilter(int, int) - Constructor for class com.irurueta.numerical.signal.processing.KalmanFilter
-
Constructor in case of no control parameters.
- KalmanFilter(int, int, int) - Constructor for class com.irurueta.numerical.signal.processing.KalmanFilter
-
Allocates a Kalman filter and all its matrices and initializes them.
- keepInliersData(PROMedSRobustEstimator.PROMedSInliersData, int) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Keeps inliers data stored and initializes a new one with proper initial values.
- kernel - Variable in class com.irurueta.numerical.signal.processing.Convolver1D
-
Kernel to convolve the signal with.
- kernelCenter - Variable in class com.irurueta.numerical.signal.processing.Convolver1D
-
Position of kernel center.
- KrigingInterpolator - Class in com.irurueta.numerical.interpolation
-
Interpolates sparsely defined points using D.G.
- KrigingInterpolator(Matrix, double[]) - Constructor for class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Constructor.
- KrigingInterpolator(Matrix, double[], KrigingInterpolator.Variogram) - Constructor for class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Constructor.
- KrigingInterpolator(Matrix, double[], KrigingInterpolator.Variogram, double[]) - Constructor for class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Constructor.
- KrigingInterpolator.Variogram - Class in com.irurueta.numerical.interpolation
-
Variogram function.
L
- LAGUER_EPS - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Constant considered as machine precision for Laguerre method.
- LaguerrePolynomialRootsEstimator - Class in com.irurueta.numerical.roots
-
This class estimates the roots of a polynomial of degree n.
- LaguerrePolynomialRootsEstimator() - Constructor for class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Empty constructor.
- LaguerrePolynomialRootsEstimator(boolean) - Constructor for class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Constructor.
- LaguerrePolynomialRootsEstimator(Complex[]) - Constructor for class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Constructor.
- LaguerrePolynomialRootsEstimator(Complex[], boolean) - Constructor for class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Constructor.
- lasterr - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Most recently computed error.
- lastval - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Most recently computed value.
- LevenbergMarquardtMultiDimensionFitter - Class in com.irurueta.numerical.fitting
-
Fits provided data (x, y) to a generic non-linear function using Levenberg-Marquardt iterative algorithm.
- LevenbergMarquardtMultiDimensionFitter() - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Constructor.
- LevenbergMarquardtMultiDimensionFitter(Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Constructor.
- LevenbergMarquardtMultiDimensionFitter(Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Constructor.
- LevenbergMarquardtMultiDimensionFitter(LevenbergMarquardtMultiDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Constructor.
- LevenbergMarquardtMultiDimensionFitter(LevenbergMarquardtMultiDimensionFunctionEvaluator, Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Constructor.
- LevenbergMarquardtMultiDimensionFitter(LevenbergMarquardtMultiDimensionFunctionEvaluator, Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Constructor.
- LevenbergMarquardtMultiDimensionFunctionEvaluator - Interface in com.irurueta.numerical.fitting
-
Interface to evaluate non-linear multidimensional functions.
- LevenbergMarquardtMultiVariateFitter - Class in com.irurueta.numerical.fitting
-
Fits provided data (x, y) to a generic non-linear function using Levenberg-Marquardt iterative algorithm.
- LevenbergMarquardtMultiVariateFitter() - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Constructor.
- LevenbergMarquardtMultiVariateFitter(Matrix, Matrix, double) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Constructor.
- LevenbergMarquardtMultiVariateFitter(Matrix, Matrix, double[]) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Constructor.
- LevenbergMarquardtMultiVariateFitter(LevenbergMarquardtMultiVariateFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Constructor.
- LevenbergMarquardtMultiVariateFitter(LevenbergMarquardtMultiVariateFunctionEvaluator, Matrix, Matrix, double) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Constructor.
- LevenbergMarquardtMultiVariateFitter(LevenbergMarquardtMultiVariateFunctionEvaluator, Matrix, Matrix, double[]) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Constructor.
- LevenbergMarquardtMultiVariateFunctionEvaluator - Interface in com.irurueta.numerical.fitting
-
Interface to evaluate non-linear multi variate and multidimensional functions.
- LevenbergMarquardtSingleDimensionFitter - Class in com.irurueta.numerical.fitting
-
Fits provided data (x,y) to a generic non-linear function using Levenberg-Marquardt iterative algorithm.
- LevenbergMarquardtSingleDimensionFitter() - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Constructor.
- LevenbergMarquardtSingleDimensionFitter(double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Constructor.
- LevenbergMarquardtSingleDimensionFitter(double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Constructor.
- LevenbergMarquardtSingleDimensionFitter(LevenbergMarquardtSingleDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Constructor.
- LevenbergMarquardtSingleDimensionFitter(LevenbergMarquardtSingleDimensionFunctionEvaluator, double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Constructor.
- LevenbergMarquardtSingleDimensionFitter(LevenbergMarquardtSingleDimensionFunctionEvaluator, double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Constructor.
- LevenbergMarquardtSingleDimensionFunctionEvaluator - Interface in com.irurueta.numerical.fitting
-
Interface to evaluate non-linear single dimensional functions.
- LinearFitterMultiDimensionFunctionEvaluator - Interface in com.irurueta.numerical.fitting
-
Interface to evaluate linear multidimensional functions f(x1, x2, ...) = a * f0(x1, x2, ...) + b * f1(x1, x2, ...) + ...
- LinearFitterSingleDimensionFunctionEvaluator - Interface in com.irurueta.numerical.fitting
-
Interface to evaluate linear single dimensional functions f(x) = a * f0(x) + b * f1(x) + ...
- LinearInterpolator - Class in com.irurueta.numerical.interpolation
-
Computes linear interpolation.
- LinearInterpolator(double[], double[]) - Constructor for class com.irurueta.numerical.interpolation.LinearInterpolator
- LineMultiOptimizer - Class in com.irurueta.numerical.optimization
-
Abstract class to search for a local minimum on a multidimensional function along a given line of input parameters.
- LineMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Empty constructor.
- LineMultiOptimizer(MultiDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Constructor.
- LineMultiOptimizer(MultiDimensionFunctionEvaluatorListener, double[], double[]) - Constructor for class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Constructor.
- linmin() - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Searches for a minimum along a given line of input values.
- linmin() - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Searches for a minimum along a given line of input values.
- listener - Variable in class com.irurueta.numerical.DerivativeEstimator
-
Listener to evaluate a single dimension function.
- listener - Variable in class com.irurueta.numerical.DirectionalEvaluator
-
Listener to evaluate a multidimensional function.
- listener - Variable in class com.irurueta.numerical.GradientEstimator
-
Listener to evaluate a multidimensional function.
- listener - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Listener to evaluate single dimension functions at required points.
- listener - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
-
Listener to evaluate single dimension functions at required points.
- listener - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Listener to evaluate single dimension matrix functions at required points.
- listener - Variable in class com.irurueta.numerical.integration.MidPointQuadrature
-
Listener to evaluate single dimension functions at required points.
- listener - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Listener to evaluate single dimension matrix functions at required points.
- listener - Variable in class com.irurueta.numerical.integration.TrapezoidalQuadrature
-
Listener to evaluate single dimension functions at required points.
- listener - Variable in class com.irurueta.numerical.JacobianEstimator
-
Listener to evaluate a multivariate function.
- listener - Variable in class com.irurueta.numerical.optimization.MultiOptimizer
-
Listener to evaluate a multidimensional function.
- listener - Variable in class com.irurueta.numerical.optimization.SingleOptimizer
-
Listener to evaluate single dimension functions.
- listener - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Listener to be notified of events such as when estimation starts, ends or estimation progress changes.
- listener - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
- listener - Variable in class com.irurueta.numerical.robust.RobustEstimator
-
Listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
- listener - Variable in class com.irurueta.numerical.roots.SingleRootEstimator
-
Listener that evaluates a single dimension function in order to find its root.
- listener - Variable in class com.irurueta.numerical.signal.processing.Convolver1D
-
Listener in charge of attending events generated by this instance.
- LMEDS - Enum constant in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
-
Least Median of Squares.
- lmedsInlierModelEnabled - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Indicates whether LMedS or MSAC inlier model is enabled.
- LMedSInliersData(int) - Constructor for class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
-
Constructor.
- LMedSPolynomialRobustEstimator - Class in com.irurueta.numerical.polynomials.estimators
-
Finds the best polynomial using LMedS algorithm.
- LMedSPolynomialRobustEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Constructor.
- LMedSPolynomialRobustEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Constructor.
- LMedSPolynomialRobustEstimator(int, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Constructor.
- LMedSPolynomialRobustEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Constructor.
- LMedSPolynomialRobustEstimator(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Constructor.
- LMedSPolynomialRobustEstimator(PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Constructor.
- LMedSPolynomialRobustEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Constructor.
- LMedSPolynomialRobustEstimator(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Constructor.
- LMedSRobustEstimator<T> - Class in com.irurueta.numerical.robust
-
This class implements LMedS (Least Median of Squares) algorithm to robustly estimate a data model.
- LMedSRobustEstimator() - Constructor for class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Constructor.
- LMedSRobustEstimator(LMedSRobustEstimatorListener<T>) - Constructor for class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Constructor with listener.
- LMedSRobustEstimator.LMedSInliersData - Class in com.irurueta.numerical.robust
-
Contains data related to inliers estimated in one iteration.
- LMedSRobustEstimatorListener<T> - Interface in com.irurueta.numerical.robust
-
Listener to get data samples and residuals for LMedS method.
- LMSE_POLYNOMIAL_ESTIMATOR - Enum constant in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorType
-
Polynomial estimator using LMSE (Least Mean Square Error) solutions.
- LMSEPolynomialEstimator - Class in com.irurueta.numerical.polynomials.estimators
-
This class defines an LMSE (Least Mean Square Error) estimator of a polynomial of a given degree using points where polynomials (or its derivatives or integrals) are evaluated.
- LMSEPolynomialEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Constructor.
- LMSEPolynomialEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Constructor.
- LMSEPolynomialEstimator(int, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Constructor.
- LMSEPolynomialEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Constructor.
- LMSEPolynomialEstimator(int, List<PolynomialEvaluation>, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Constructor.
- LMSEPolynomialEstimator(PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Constructor.
- LMSEPolynomialEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Constructor.
- LMSEPolynomialEstimator(List<PolynomialEvaluation>, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Constructor.
- lnsrch(double[], double, double[], double[], double[], double[], double, boolean[]) - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Internal method to search for a minimum along a line.
- locate(double) - Method in class com.irurueta.numerical.interpolation.BaseInterpolator
-
Given a value x, returns a value j such that x is (insofar as possible) centered in the subrange xx[j..j+mm-1], where xx is the stored array.
- locked - Variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Boolean indicating whether this instance is locked because some computations are being done.
- locked - Variable in class com.irurueta.numerical.optimization.Optimizer
-
Boolean indicating whether this instance is locked because computations are being done.
- locked - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
True when estimator is estimating radial distortion.
- locked - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Indicates if this estimator is locked because an estimation is being computed.
- locked - Variable in class com.irurueta.numerical.robust.RobustEstimator
-
Indicates if this estimator is locked because an estimation is being computed.
- locked - Variable in class com.irurueta.numerical.roots.RootEstimator
-
Boolean indicating that this instance is locked because it is doing computations.
- LockedException - Exception in com.irurueta.numerical
-
Exception raised when an instance is locked.
- LockedException() - Constructor for exception com.irurueta.numerical.LockedException
-
Constructor.
- LockedException(String) - Constructor for exception com.irurueta.numerical.LockedException
-
Constructor with String containing message.
- LockedException(String, Throwable) - Constructor for exception com.irurueta.numerical.LockedException
-
Constructor with message and cause.
- LockedException(Throwable) - Constructor for exception com.irurueta.numerical.LockedException
-
Constructor with cause.
- LOGGER - Static variable in class com.irurueta.numerical.BuildInfo
-
This class logger.
- LongFactorialEstimator - Class in com.irurueta.numerical
-
Estimates factorial values as long integer values.
- LongFactorialEstimator() - Constructor for class com.irurueta.numerical.LongFactorialEstimator
-
Constructor with default cache size.
- LongFactorialEstimator(int) - Constructor for class com.irurueta.numerical.LongFactorialEstimator
-
Constructor.
- LOWER_SQUARE_ROOT_MID_POINT - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
-
Lower square root mid-point.
- LowerSquareRootMidPointMatrixQuadrature - Class in com.irurueta.numerical.integration
-
This is an exact replacement for MidPointMatrixQuadrature, except that it allows for an inverse square-root singularity in the integrand at the lower limit "a".
- LowerSquareRootMidPointMatrixQuadrature(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.LowerSquareRootMidPointMatrixQuadrature
-
Constructor.
- LowerSquareRootMidPointQuadrature - Class in com.irurueta.numerical.integration
-
This is an exact replacement for MidPointQuadrature, except that it allows for an inverse square-root singularity in the integrand at the lower limit "a".
- LowerSquareRootMidPointQuadrature(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadrature
-
Constructor.
- LowerSquareRootMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Lower Square Root mid-point quadrature when lower bound integration bound lies at a function singularity.
- LowerSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadratureIntegrator
-
Constructor.
- LowerSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadratureIntegrator
-
Constructor.
- LowerSquareRootMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Lower Square Root mid-point quadrature when lower bound integration bound lies at a function singularity.
- LowerSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadratureMatrixIntegrator
-
Constructor.
- LowerSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.LowerSquareRootMidPointQuadratureMatrixIntegrator
-
Constructor.
- luDecomposer - Variable in class com.irurueta.numerical.PadeApproximantEstimator
-
Computes LU decomposition to find denominator coefficients.
M
- m - Variable in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
-
Length of x1v array.
- m - Variable in class com.irurueta.numerical.interpolation.BilinearInterpolator
-
Length of x1v array.
- m - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Length of x1v array.
- M - Static variable in class com.irurueta.numerical.interpolation.CubicSplineInterpolator
-
Length of x's and y's to take into account.
- M - Static variable in class com.irurueta.numerical.interpolation.LinearInterpolator
-
Length of x's and y's to take into account.
- ma - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Number of function parameters to be estimated.
- ma - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Number of function parameters to be estimated.
- ma - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Number of function parameters to be estimated.
- ma - Variable in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Number of function basis used as a linear combination of functions being fitted
- ma - Variable in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Number of function basis used as a linear combination of functions being fitted.
- MatrixIntegrator - Class in com.irurueta.numerical.integration
-
Integrates single dimension matrix (multivariate) functions over a specified interval.
- MatrixIntegrator() - Constructor for class com.irurueta.numerical.integration.MatrixIntegrator
- MatrixQuadrature - Class in com.irurueta.numerical.integration
-
Abstract base class for elementary matrix quadrature algorithms used for matrix (multivariate) single dimension function integration.
- MatrixQuadrature() - Constructor for class com.irurueta.numerical.integration.MatrixQuadrature
- MatrixSingleDimensionFunctionEvaluatorListener - Interface in com.irurueta.numerical.integration
-
Interface to define how matrix (multivariate) single dimension functions can be evaluated.
- MAX_BETA - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Maximum allowed value for beta.
- MAX_BETA - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Maximum allowed value for beta.
- MAX_CONFIDENCE - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Maximum allowed confidence value.
- MAX_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Maximum allowed confidence value.
- MAX_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Maximum allowed confidence value.
- MAX_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Maximum allowed confidence value.
- MAX_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Maximum allowed confidence value.
- MAX_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Maximum allowed confidence value.
- MAX_ETA0 - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Maximum allowed value for eta0.
- MAX_ETA0 - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Maximum allowed value for eta0.
- MAX_MAX_OUTLIERS_PROPORTION - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Maximum allowed value for maximum allowed outliers proportion in the input data.
- MAX_MAX_OUTLIERS_PROPORTION - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Maximum allowed value for maximum allowed outliers proportion in the input data
- MAX_PROGRESS_DELTA - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Maximum allowed value for progress delta.
- MAX_PROGRESS_DELTA - Static variable in class com.irurueta.numerical.robust.RobustEstimator
-
Maximum allowed value for progress delta.
- maxEvalPoint - Variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Maximum evaluation point.
- maxEvaluations - Variable in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Maximum number of evaluations to be weighted and taken into account.
- MaximumLikelihoodEstimator - Class in com.irurueta.numerical
-
Abstract class to estimate the most likely value from a series of data assumed to be normally distributed.
- MaximumLikelihoodEstimator() - Constructor for class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Empty constructor.
- MaximumLikelihoodEstimator(double) - Constructor for class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Constructor.
- MaximumLikelihoodEstimator(double[], double) - Constructor for class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Constructor.
- MaximumLikelihoodEstimator(double, double, double[], double) - Constructor for class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Constructor.
- MaximumLikelihoodEstimatorMethod - Enum Class in com.irurueta.numerical
-
Types of maximum likelihood estimation to determine the real value corresponding to a set of values.
- MaximumLikelihoodEstimatorMethod() - Constructor for enum class com.irurueta.numerical.MaximumLikelihoodEstimatorMethod
- MAXIT - Static variable in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
-
Maximum allowed number of iterations.
- MAXIT - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Maximum number of iterations.
- MAXIT - Static variable in class com.irurueta.numerical.roots.RidderSingleRootEstimator
-
Maximum number of iterations.
- MAXIT - Static variable in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
-
Maximum number of iterations.
- MAXIT - Static variable in class com.irurueta.numerical.roots.SecantSingleRootEstimator
-
Maximum number of iterations.
- maxIterations - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Maximum allowed number of iterations.
- maxIterations - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Maximum allowed number of iterations.
- maxIterations - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Maximum allowed number of iterations.
- maxIterations - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Maximum allowed number of iterations.
- maxIterations - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Maximum allowed number of iterations.
- maxIterations - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Maximum allowed number of iterations.
- maxOutliersProportion - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
In this implementation, PROSAC won't stop before having reached the corresponding inliers rate on the complete data set.
- maxOutliersProportion - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
In this implementation, PROSAC won't stop before having reached the corresponding inliers rate on the complete data set.
- maxValue - Variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Maximum value found on provided input data array.
- measurementMatrix - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Measurement matrix (H).
- measurementNoiseCov - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Measurement noise covariance matrix (R).
- measurementNoiseCov - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
Estimated measurement noise covariance matrix.
- MeasurementNoiseCovarianceEstimator - Class in com.irurueta.numerical.signal.processing
-
Estimates noise covariance matrix for a given set of measures.
- MeasurementNoiseCovarianceEstimator(int) - Constructor for class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
Constructor.
- medianResidual - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Median of error found on current iteration among all provided samples.
- medianResidualImproved - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
-
Indicates whether median residual computed in current iteration has improved respect to previous iterations.
- medianResidualImproved - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
-
Indicates whether median residual computed in current iteration has improved respect to previous iterations.
- medianResidualImproved - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Indicates whether median residual computed in current iteration has improved respect to previous iterations.
- mfit - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Number of parameters ot be fitted.
- mfit - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Number of parameters ot be fitted.
- mfit - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Number of parameters to be fitted.
- MID_POINT - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
-
Mid-point quadrature.
- MidPointMatrixQuadrature - Class in com.irurueta.numerical.integration
-
Implementation of matrix quadrature using mid-point algorithm.
- MidPointMatrixQuadrature(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Constructor.
- MidPointQuadrature - Class in com.irurueta.numerical.integration
-
Implementation of quadrature using mid-point algorithm.
- MidPointQuadrature(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.MidPointQuadrature
-
Constructor.
- MidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Mid-Point quadrature up to desired accuracy.
- MidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.MidPointQuadratureIntegrator
-
Constructor with default accuracy.
- MidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.MidPointQuadratureIntegrator
-
Constructor.
- MidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes single dimension matrix (multivariate) function integration by using Mid-Point quadrature up to desired accuracy.
- MidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.MidPointQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- MidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.MidPointQuadratureMatrixIntegrator
-
Constructor.
- MIN_BETA - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Minimum allowed value for beta.
- MIN_BETA - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Minimum allowed value for beta.
- MIN_CONFIDENCE - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Minimum allowed confidence value.
- MIN_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Minimum allowed confidence value.
- MIN_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Minimum allowed confidence value.
- MIN_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Minimum allowed confidence value.
- MIN_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Minimum allowed confidence value.
- MIN_CONFIDENCE - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Minimum allowed confidence value.
- MIN_DEGREE - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Minimum allowed degree to be estimated
- MIN_DERIVATIVE_ORDER - Static variable in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
-
Minimum allowed derivative order.
- MIN_ETA0 - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Minimum allowed value for eta0.
- MIN_ETA0 - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Minimum allowed value for eta0.
- MIN_GAUSSIAN_SIGMA - Static variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Minimum allowed Gaussian sigma to be set for each sample.
- MIN_INLER_FACTOR - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Minimum allowed value for inlier factor.
- MIN_INLER_FACTOR - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Minimum allowed value for inlier factor.
- MIN_INTEGRAL_ORDER - Static variable in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Minimum allowed integral order.
- MIN_INTEGRAL_ORDER - Static variable in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Minimum allowed integral order.
- MIN_ITERATIONS - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Minimum allowed number of iterations.
- MIN_ITERATIONS - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Minimum allowed number of iterations.
- MIN_ITERATIONS - Static variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Minimum allowed number of iterations.
- MIN_ITERATIONS - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Minimum allowed number of iterations.
- MIN_ITERATIONS - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Minimum allowed number of iterations.
- MIN_ITERATIONS - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Minimum allowed number of iterations.
- MIN_MAX_OUTLIERS_PROPORTION - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Minimum allowed value for maximum allowed outliers proportion in the input data.
- MIN_MAX_OUTLIERS_PROPORTION - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Minimum allowed value for maximum allowed outliers proportion in the input data.
- MIN_NUM_SAMPLES - Static variable in class com.irurueta.numerical.robust.SubsetSelector
-
Constant defining minimum amount of allowed samples.
- MIN_NUMBER_OF_BINS - Static variable in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Minimum number of bins allowed on the histogram.
- MIN_ORDER - Static variable in class com.irurueta.numerical.polynomials.Polynomial
-
Minimum derivative / integration order.
- MIN_PROGRESS_DELTA - Static variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Minimum allowed value for progress delta.
- MIN_PROGRESS_DELTA - Static variable in class com.irurueta.numerical.robust.RobustEstimator
-
Minimum allowed value for progress delta
- MIN_STOP_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Minimum value that can be set as stop threshold.
- MIN_STOP_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Minimum allowed stop threshold value
- MIN_STOP_THRESHOLD - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Minimum allowed stop threshold value.
- MIN_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Minimum value that can be set as threshold.
- MIN_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Minimum value that can be set as threshold.
- MIN_THRESHOLD - Static variable in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Minimum value that can be set as threshold.
- MIN_THRESHOLD - Static variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Minimum allowed threshold to determine inliers.
- MIN_THRESHOLD - Static variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Minimum allowed threshold to determine inliers.
- MIN_THRESHOLD - Static variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Minimum allowed threshold to determine inliers.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Minimum allowed tolerance.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Minimum allowed tolerance value.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Minimum allowed tolerance value.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Minimum allowed tolerance value.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
-
Minimum allowed tolerance.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Minimum allowed tolerance value.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Minimum allowed tolerance value.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Minimum allowed tolerance value.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
-
Minimum allowed tolerance that can be set.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.BrentSingleRootEstimator
-
Constant defining minimum allowed tolerance.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
-
Minimum allowed tolerance that can be set.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
-
Constant defining minimum allowed tolerance.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.RidderSingleRootEstimator
-
Constant defining minimum allowed tolerance.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
-
Constant defining minimum allowed tolerance.
- MIN_TOLERANCE - Static variable in class com.irurueta.numerical.roots.SecantSingleRootEstimator
-
Constant defining minimum allowed tolerance.
- MIN_VALID_POLY_PARAMS_LENGTH - Static variable in class com.irurueta.numerical.polynomials.Polynomial
-
Minimum allowed length in polynomial parameters.
- MIN_VALID_POLY_PARAMS_LENGTH - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Minimum allowed length in polynomial parameters.
- minEvalPoint - Variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Minimum evaluation point.
- minimize() - Method in class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
This function estimates a function minimum within provided or computed bracket of values.
- minimize() - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
This function estimates a function minimum.
- minimize() - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
This function estimates a function minimum within provided or computed bracket of values.
- minimize() - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
This function estimates a function minimum.
- minimize() - Method in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
-
This function estimates a function minimum within provided or computed bracket of values.
- minimize() - Method in class com.irurueta.numerical.optimization.Optimizer
-
This function estimates a function minimum.
- minimize() - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
This function estimates a function minimum.
- minimize() - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
This function estimates a function minimum.
- minimize() - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
This function estimates a function minimum.
- minValue - Variable in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Minimum value found on provided input data array.
- MIRROR_EDGE - Enum constant in enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
-
When convolution kernel reaches edge of signal being convoluted, it is assumed that the signal is mirrored.
- mm - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
-
Length of data to be taken into account on x's and y's.
- mm - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Number of rows of sub-block of ym values to be processed.
- mov3(double[], double[], double[], double, double, double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Moves d, e and f into a[0], b[0] and c[0].
- mp - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Number of measurement vector dimensions (measure parameters).
- mp - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
Number of measurement vector dimensions (measure parameters).
- mpts - Variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Number of points in the simplex.
- MR - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Constant that affects the number of iterations.
- mrqcof(double[], Matrix, double[]) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Used by fit to evaluate the linearized fitting matrix alpha, and vector beta to calculate chi square.
- mrqcof(double[], Matrix, double[]) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Used by fit to evaluate the linearized fitting matrix alpha, and vector beta to calculate chi square.
- mrqcof(double[], Matrix, double[]) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Used by
LevenbergMarquardtSingleDimensionFitter.fit()
to evaluate the linearized fitting matrix alpha, and vector beta to calculate chi square. - MSAC - Enum constant in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
-
Median Sample Consensus.
- MSACInliersData(int) - Constructor for class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
-
Constructor.
- MSACPolynomialRobustEstimator - Class in com.irurueta.numerical.polynomials.estimators
-
Finds the best polynomial using RANSAC algorithm.
- MSACPolynomialRobustEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Constructor.
- MSACPolynomialRobustEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Constructor.
- MSACPolynomialRobustEstimator(int, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Constructor.
- MSACPolynomialRobustEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Constructor.
- MSACPolynomialRobustEstimator(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Constructor.
- MSACPolynomialRobustEstimator(PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Constructor.
- MSACPolynomialRobustEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Constructor.
- MSACPolynomialRobustEstimator(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Constructor.
- MSACRobustEstimator<T> - Class in com.irurueta.numerical.robust
-
This class implements MSAC (Median SAmple Consensus) algorithm to robustly estimate a data model.
- MSACRobustEstimator() - Constructor for class com.irurueta.numerical.robust.MSACRobustEstimator
-
Constructor.
- MSACRobustEstimator(MSACRobustEstimatorListener<T>) - Constructor for class com.irurueta.numerical.robust.MSACRobustEstimator
-
Constructor.
- MSACRobustEstimator.MSACInliersData - Class in com.irurueta.numerical.robust
-
Contains data related to inliers estimated in one iteration.
- MSACRobustEstimatorListener<T> - Interface in com.irurueta.numerical.robust
-
Listener to get data samples and residuals for MSAC method
- mse - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Mean square error.
- mse - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Mean square error.
- mse - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Mean square error.
- MT - Static variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Constant that affects the number of iterations.
- MultiDimensionFitter - Class in com.irurueta.numerical.fitting
-
Base class to fit a multi dimension function y = f(x1, x2, ...) by using provided data (x, y)
- MultiDimensionFitter() - Constructor for class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Constructor
- MultiDimensionFitter(Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Constructor
- MultiDimensionFitter(Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Constructor
- MultiDimensionFunctionEvaluatorListener - Interface in com.irurueta.numerical
-
Interface to define how multi dimension functions can be evaluated.
- MultiDimensionLinearFitter - Class in com.irurueta.numerical.fitting
-
Base class to fit provided multidimensional data (x1, x2, ..., y1, y2, ...)
- MultiDimensionLinearFitter() - Constructor for class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Constructor
- MultiDimensionLinearFitter(Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Constructor
- MultiDimensionLinearFitter(Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Constructor
- MultiDimensionLinearFitter(LinearFitterMultiDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Constructor
- MultiDimensionLinearFitter(LinearFitterMultiDimensionFunctionEvaluator, Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Constructor
- MultiDimensionLinearFitter(LinearFitterMultiDimensionFunctionEvaluator, Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Constructor
- MultiOptimizer - Class in com.irurueta.numerical.optimization
-
Abstract class to search for minima on multidimensional classes.
- MultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.MultiOptimizer
-
Empty constructor.
- MultiOptimizer(MultiDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.optimization.MultiOptimizer
-
Constructor.
- multiply(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Multiplies this polynomial with another one.
- multiply(Polynomial, Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Multiplies two polynomials.
- multiplyAndReturnNew(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Multiplies two polynomials and returns a new instance containing result.
- multiplyByScalar(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Multiplies all parameters of this polynomial by provided scalar.
- multiplyByScalar(double, Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Multiplies all parameters of this polynomial by a scalar and stores the result into provided polynomial instance.
- multiplyByScalarAndReturnNew(double) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Multiplies all parameters of this polynomial by a scalar and returns a new polynomial containing the result.
- MultiQuadricRadialBasisFunction - Class in com.irurueta.numerical.interpolation
-
Multi-quadric Radial Function Basis implementation.
- MultiQuadricRadialBasisFunction() - Constructor for class com.irurueta.numerical.interpolation.MultiQuadricRadialBasisFunction
-
Constructor.
- MultiQuadricRadialBasisFunction(double) - Constructor for class com.irurueta.numerical.interpolation.MultiQuadricRadialBasisFunction
-
Constructor.
- MultiVariateFitter - Class in com.irurueta.numerical.fitting
-
Base class to fit a multi variate function [y1, y2, ...] = f([x1, x2, ...])
- MultiVariateFitter() - Constructor for class com.irurueta.numerical.fitting.MultiVariateFitter
-
Constructor.
- MultiVariateFitter(Matrix, Matrix, double) - Constructor for class com.irurueta.numerical.fitting.MultiVariateFitter
-
Constructor.
- MultiVariateFitter(Matrix, Matrix, double[]) - Constructor for class com.irurueta.numerical.fitting.MultiVariateFitter
-
Constructor.
- MultiVariateFunctionEvaluatorListener - Interface in com.irurueta.numerical
-
Interface to define how multivariate functions can be evaluated.
N
- n - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Numerator of Padé approximant.
- n - Variable in class com.irurueta.numerical.integration.MatrixQuadrature
-
Current level of refinement.
- n - Variable in class com.irurueta.numerical.integration.Quadrature
-
Current level of refinement.
- n - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
-
Length of x and y values to be interpolated.
- n - Variable in class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
-
Number of points provided in a matrix as a basis for interpolation.
- n - Variable in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
-
Length of x2v array.
- n - Variable in class com.irurueta.numerical.interpolation.BilinearInterpolator
-
Length of x2v array.
- n - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Length of x2v array.
- n - Variable in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Number of dimensions on function being evaluated.
- n - Variable in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Number of dimensions on function being evaluated.
- n - Variable in class com.irurueta.numerical.PadeApproximantEstimator
-
Number of coefficients being processed based on provided Taylor power series ones.
- N_POINTS - Static variable in class com.irurueta.numerical.SavitzkyGolayDerivativeEstimator
-
Number of required point to evaluate to compute derivative.
- N_POINTS - Static variable in class com.irurueta.numerical.SavitzkyGolayGradientEstimator
-
Number of required point to evaluate to compute derivative.
- ndat - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Number of samples (x, y) in provided input data
- ndat - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Number of samples (x, y) in provided input data.
- ndat - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Number of samples (x, y) in provided input data.
- ndim - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Number of dimensions of each point.
- ndim - Variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Number of dimensions of current function being optimized.
- ndone - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Convergence parameter.
- ndone - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Convergence parameter.
- ndone - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Convergence parameter.
- NewtonRaphsonSingleRootEstimator - Class in com.irurueta.numerical.roots
-
Finds a single dimensional function's root within a bracket of values using Newton-Raphson's method.
- NewtonRaphsonSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
-
Empty constructor.
- NewtonRaphsonSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
-
Constructor.
- NewtonRaphsonSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
-
Constructor.
- next() - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
-
Returns the value of the integral at the nth stage of refinement.
- next() - Method in class com.irurueta.numerical.integration.MidPointQuadrature
-
Returns the value of the integral at the nth stage of refinement.
- next() - Method in class com.irurueta.numerical.integration.Quadrature
-
Returns the value of the integral at the nth stage of refinement.
- next() - Method in class com.irurueta.numerical.integration.TrapezoidalQuadrature
-
Returns the value of the integral at the nth stage of refinement.
- next(Matrix) - Method in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Returns the value of the integral at the nth stage of refinement.
- next(Matrix) - Method in class com.irurueta.numerical.integration.MatrixQuadrature
-
Returns the value of the integral at the nth stage of refinement.
- next(Matrix) - Method in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Returns the value of the integral at the nth stage of refinement.
- next(Matrix) - Method in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Returns the value of the integral at the nth stage of refinement.
- nfunc - Variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Number of function evaluations.
- nIters - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Number of iterations to be done to obtain required confidence.
- nIters - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Number of iterations to be done to obtain required confidence.
- NMAX - Static variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Maximum number of iterations.
- nn - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Number of columns of sub-block of ym values to be processed.
- norm - Variable in class com.irurueta.numerical.interpolation.RadialBasisFunctionInterpolator
-
Indicates whether normalized Radial Basis Function (RBF) must be used or not.
- normalize() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Normalizes this polynomial so that the array of parameters has unitary norm.
- normalize(Matrix, Matrix, int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Normalizes rows of system matrix and values matrix to increase accuracy of linear system of equations to be solved.
- normalize(Matrix, Matrix, int, double) - Static method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Normalizes rows of system matrix and values matrix to increase accuracy of linear system of equations to be solved.
- normalize(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Normalizes parameters of this polynomial so that the array of parameters has unitary norm and stores result into provided instance.
- normalizeAndReturnNew() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Normalizes parameters of this polynomial so that the array of parameters has unitary norm and returns result as a new polynomial instance.
- normalizeHighestDegreeTerm() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Normalizes parameters of this polynomial so that the highest degree term becomes 1.0.
- normalizeHighestDegreeTerm(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Normalizes parameters of this polynomial so that the highest degree term becomes 1.0 and stores result into provided instance.
- normalizeHighestDegreeTermAndReturnNew() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Normalizes parameters of this polynomial so that the highest degree term becomes 1.0 and returns the result as a new instance.
- normmax(Matrix) - Static method in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Estimates infinite norm of provided matrix.
- normMin(Matrix) - Static method in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Estimates smallest norm of provided matrix.
- normMin(Matrix) - Static method in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Estimates smallest norm of provided matrix.
- NotAvailableException - Exception in com.irurueta.numerical
-
Exception raised when some value cannot be retrieved, usually because it has not yet been provided or computed.
- NotAvailableException() - Constructor for exception com.irurueta.numerical.NotAvailableException
-
Constructor.
- NotAvailableException(String) - Constructor for exception com.irurueta.numerical.NotAvailableException
-
Constructor with String containing message.
- NotAvailableException(String, Throwable) - Constructor for exception com.irurueta.numerical.NotAvailableException
-
Constructor with message and cause.
- NotAvailableException(Throwable) - Constructor for exception com.irurueta.numerical.NotAvailableException
-
Constructor with cause.
- NotEnoughSamplesException - Exception in com.irurueta.numerical.robust
-
Raised if there aren't enough samples to make a computation.
- NotEnoughSamplesException() - Constructor for exception com.irurueta.numerical.robust.NotEnoughSamplesException
-
Constructor.
- NotEnoughSamplesException(String) - Constructor for exception com.irurueta.numerical.robust.NotEnoughSamplesException
-
Constructor with String containing message.
- NotEnoughSamplesException(String, Throwable) - Constructor for exception com.irurueta.numerical.robust.NotEnoughSamplesException
-
Constructor with message and cause.
- NotEnoughSamplesException(Throwable) - Constructor for exception com.irurueta.numerical.robust.NotEnoughSamplesException
-
Constructor with cause.
- NotReadyException - Exception in com.irurueta.numerical
-
Raised when attempting to do a certain operation and not all parameters have been provided or are correctly set.
- NotReadyException() - Constructor for exception com.irurueta.numerical.NotReadyException
-
Constructor.
- NotReadyException(String) - Constructor for exception com.irurueta.numerical.NotReadyException
-
Constructor with String containing message.
- NotReadyException(String, Throwable) - Constructor for exception com.irurueta.numerical.NotReadyException
-
Constructor with message and cause.
- NotReadyException(Throwable) - Constructor for exception com.irurueta.numerical.NotReadyException
-
Constructor with cause.
- npt - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Number of provided points.
- nthDerivative(int) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Replaces this instance by its nth-order derivative.
- nthDerivative(int, Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes nth-order derivative of polynomial.
- nthDerivativeAndReturnNew(int) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes nth-order derivative of polynomial.
- nthIntegration(int) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes polynomial containing the nth-order integration of current one.
- nthIntegration(int, double[]) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes polynomial containing the nth-order integration of current one.
- nthIntegration(int, Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes polynomial containing the nth-order integration of current one.
- nthIntegration(int, Polynomial, double[]) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes polynomial containing the nth-order integration of current one.
- nthIntegrationAndReturnNew(int) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes polynomial containing the nth-order integration of current one.
- nthIntegrationAndReturnNew(int, double[]) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes polynomial containing the nth-order integration of current one.
- nthOrderIntegrateInterval(double, double, int) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes nth-integration over provided interval.
- nthOrderIntegrateInterval(double, double, int, double[]) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes nth-integration over provided interval.
- NTRY - Static variable in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Number tries to automatically compute a bracket of values for a given function.
- nugsq - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
-
Squared offset.
- numberOfBins - Variable in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Number of bins to be used on the histogram.
- numerators - Variable in class com.irurueta.numerical.PadeApproximantEstimator.Result
-
Numerator coefficients.
- NumericalException - Exception in com.irurueta.numerical
-
Base class for all the exceptions in this package.
- NumericalException() - Constructor for exception com.irurueta.numerical.NumericalException
-
Constructor.
- NumericalException(String) - Constructor for exception com.irurueta.numerical.NumericalException
-
Constructor with String containing message.
- NumericalException(String, Throwable) - Constructor for exception com.irurueta.numerical.NumericalException
-
Constructor with message and cause.
- NumericalException(Throwable) - Constructor for exception com.irurueta.numerical.NumericalException
-
Constructor with cause.
- numInliers - Variable in class com.irurueta.numerical.robust.InliersData
-
Number of inliers found on current iteration.
- numSamples - Variable in class com.irurueta.numerical.robust.SubsetSelector
-
Total number of samples to pick subsets from.
- numSelected - Variable in class com.irurueta.numerical.robust.WeightSelection
-
Number of correspondences that have been selected.
O
- onConvolveProgressChange(float) - Method in interface com.irurueta.numerical.signal.processing.Convolver1D.Convolver1DListener
-
Called when convolution progress changes.
- onEstimateEnd(PolynomialEstimator) - Method in interface com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorListener
-
Called when an estimator ends the polynomial estimation process.
- onEstimateEnd(PolynomialRobustEstimator) - Method in interface com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimatorListener
-
Called when an estimator ends the polynomial estimation process.
- onEstimateEnd(RobustEstimator<T>) - Method in interface com.irurueta.numerical.robust.RobustEstimatorListener
-
Called when estimation ends.
- onEstimateNextIteration(PolynomialRobustEstimator, int) - Method in interface com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimatorListener
-
Called when estimator iterates to refine a possible solution.
- onEstimateNextIteration(RobustEstimator<T>, int) - Method in interface com.irurueta.numerical.robust.RobustEstimatorListener
-
Called when estimator iterates to refine a possible solution.
- onEstimateProgressChange(PolynomialRobustEstimator, float) - Method in interface com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimatorListener
-
Called when estimation progress changes significantly.
- onEstimateProgressChange(RobustEstimator<T>, float) - Method in interface com.irurueta.numerical.robust.RobustEstimatorListener
-
Called when estimation progress changes significantly.
- onEstimateStart(PolynomialEstimator) - Method in interface com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorListener
-
Called when an estimator starts the polynomial estimation process.
- onEstimateStart(PolynomialRobustEstimator) - Method in interface com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimatorListener
-
Called when an estimator starts the polynomial estimation process.
- onEstimateStart(RobustEstimator<T>) - Method in interface com.irurueta.numerical.robust.RobustEstimatorListener
-
Called when estimation starts.
- onFinishConvolution() - Method in interface com.irurueta.numerical.signal.processing.Convolver1D.Convolver1DListener
-
Called when convolution finishes.
- onIterationCompleted(Optimizer, int, Integer) - Method in interface com.irurueta.numerical.optimization.OnIterationCompletedListener
-
Called when an iteration is completed.
- OnIterationCompletedListener - Interface in com.irurueta.numerical.optimization
-
Notifies of events generated by an optimizer.
- onStartConvolution() - Method in interface com.irurueta.numerical.signal.processing.Convolver1D.Convolver1DListener
-
Called when convolution starts.
- OptimizationException - Exception in com.irurueta.numerical.optimization
-
Raised when an optimizer cannot find a minimum on a function, usually because of lack of convergence.
- OptimizationException() - Constructor for exception com.irurueta.numerical.optimization.OptimizationException
-
Constructor.
- OptimizationException(String) - Constructor for exception com.irurueta.numerical.optimization.OptimizationException
-
Constructor with String containing message.
- OptimizationException(String, Throwable) - Constructor for exception com.irurueta.numerical.optimization.OptimizationException
-
Constructor with message and cause.
- OptimizationException(Throwable) - Constructor for exception com.irurueta.numerical.optimization.OptimizationException
-
Constructor with cause.
- optimizer - Variable in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Internal optimizer to find the true maximum of the probability distribution function.
- Optimizer - Class in com.irurueta.numerical.optimization
-
Abstract class to find function minima.
- Optimizer() - Constructor for class com.irurueta.numerical.optimization.Optimizer
-
Empty constructor.
P
- p - Variable in class com.irurueta.numerical.DirectionalEvaluator
-
Point currently being evaluated in the multidimensional function.
- p - Variable in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
n-dimensional point containing a minimum in a given line.
- p - Variable in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
n-dimensional point containing a minimum in a given line.
- p - Variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
n-dimensional start point.
- p - Variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Current simplex.
- PadeApproximantEstimator - Class in com.irurueta.numerical
-
Estimates the Padé approximant rational function by using a number of coefficients of a Taylor series.
- PadeApproximantEstimator() - Constructor for class com.irurueta.numerical.PadeApproximantEstimator
-
Default constructor.
- PadeApproximantEstimator(int) - Constructor for class com.irurueta.numerical.PadeApproximantEstimator
-
Constructor.
- PadeApproximantEstimator.Result - Class in com.irurueta.numerical
-
Contains result of Padé approximant.
- pi - Variable in class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
-
ith point to make comparisons.
- pneg - Variable in class com.irurueta.numerical.interpolation.ShepardInterpolator
-
Negative value of p parameter controlling Shepard power-law function phi(r) = r^-p.
- point - Variable in class com.irurueta.numerical.DirectionalEvaluator
-
Point used as a reference to determine the function's input parameters along a line.
- polishRoots - Variable in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Indicates if roots should be refined.
- Polynomial - Class in com.irurueta.numerical.polynomials
-
Contains a polynomial and common operations done with polynomials.
- Polynomial() - Constructor for class com.irurueta.numerical.polynomials.Polynomial
-
Constructor.
- Polynomial(double...) - Constructor for class com.irurueta.numerical.polynomials.Polynomial
-
Constructor.
- Polynomial(int) - Constructor for class com.irurueta.numerical.polynomials.Polynomial
-
Constructor.
- Polynomial2DInterpolator - Class in com.irurueta.numerical.interpolation
-
Interpolation in two dimensions.
- Polynomial2DInterpolator(double[], double[], Matrix) - Constructor for class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Constructor.
- Polynomial2DInterpolator(double[], double[], Matrix, int, int) - Constructor for class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Constructor.
- PolynomialEstimationException - Exception in com.irurueta.numerical.polynomials.estimators
-
Exception raised if polynomial estimation fails.
- PolynomialEstimationException() - Constructor for exception com.irurueta.numerical.polynomials.estimators.PolynomialEstimationException
-
Constructor.
- PolynomialEstimationException(String) - Constructor for exception com.irurueta.numerical.polynomials.estimators.PolynomialEstimationException
-
Constructor with String containing message.
- PolynomialEstimationException(String, Throwable) - Constructor for exception com.irurueta.numerical.polynomials.estimators.PolynomialEstimationException
-
Constructor with message and cause.
- PolynomialEstimationException(Throwable) - Constructor for exception com.irurueta.numerical.polynomials.estimators.PolynomialEstimationException
-
Constructor with cause.
- polynomialEstimator - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Internal non robust estimator of polynomial estimator.
- PolynomialEstimator - Class in com.irurueta.numerical.polynomials.estimators
-
This class defines the interface for an estimator of a polynomial of a given degree using points where polynomials are evaluated.
- PolynomialEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Constructor.
- PolynomialEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Constructor.
- PolynomialEstimator(int, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Constructor.
- PolynomialEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Constructor.
- PolynomialEstimator(int, List<PolynomialEvaluation>, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Constructor.
- PolynomialEstimator(PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Constructor.
- PolynomialEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Constructor.
- PolynomialEstimator(List<PolynomialEvaluation>, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Constructor.
- PolynomialEstimatorListener - Interface in com.irurueta.numerical.polynomials.estimators
-
Listener to be notified when estimation starts, finishes or any progress changes.
- PolynomialEstimatorType - Enum Class in com.irurueta.numerical.polynomials.estimators
-
Polynomial estimator types.
- PolynomialEstimatorType() - Constructor for enum class com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorType
- PolynomialEvaluation - Class in com.irurueta.numerical.polynomials.estimators
-
Contains an evaluation of a polynomial and the point where the polynomial has been evaluated.
- PolynomialEvaluation() - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
-
Constructor.
- PolynomialEvaluation(double) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
-
Constructor.
- PolynomialEvaluationType - Enum Class in com.irurueta.numerical.polynomials.estimators
-
Determines different types of polynomial evaluations that can be used to estimate a polynomial.
- PolynomialEvaluationType() - Constructor for enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
- PolynomialEvaluator - Class in com.irurueta.numerical
-
Utility class to evaluate polynomials having either real or complex coefficients.
- PolynomialEvaluator() - Constructor for class com.irurueta.numerical.PolynomialEvaluator
-
Empty constructor.
- PolynomialInterpolator - Class in com.irurueta.numerical.interpolation
-
Computes polynomial interpolation.
- PolynomialInterpolator(double[], double[]) - Constructor for class com.irurueta.numerical.interpolation.PolynomialInterpolator
-
Constructor.
- PolynomialInterpolator(double[], double[], int) - Constructor for class com.irurueta.numerical.interpolation.PolynomialInterpolator
-
Constructor.
- PolynomialInterpolator(double[], double[], int, boolean) - Constructor for class com.irurueta.numerical.interpolation.PolynomialInterpolator
-
Constructor.
- PolynomialRobustEstimator - Class in com.irurueta.numerical.polynomials.estimators
-
This is an abstract class for algorithms to robustly find the best Polynomial for provided collection of evaluations.
- PolynomialRobustEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Constructor.
- PolynomialRobustEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Constructor.
- PolynomialRobustEstimator(int, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Constructor.
- PolynomialRobustEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Constructor.
- PolynomialRobustEstimator(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Constructor.
- PolynomialRobustEstimator(PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Constructor.
- PolynomialRobustEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Constructor.
- PolynomialRobustEstimator(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Constructor.
- PolynomialRobustEstimatorListener - Interface in com.irurueta.numerical.polynomials.estimators
-
Listener to be notified of events such as when estimation starts, ends or when progress changes.
- PolynomialRootsEstimator - Class in com.irurueta.numerical.roots
-
Abstract class to estimate the roots of a polynomial.
- PolynomialRootsEstimator() - Constructor for class com.irurueta.numerical.roots.PolynomialRootsEstimator
-
Empty constructor.
- PolynomialsException - Exception in com.irurueta.numerical.polynomials
-
Base exception for polynomials.
- PolynomialsException() - Constructor for exception com.irurueta.numerical.polynomials.PolynomialsException
-
Constructor.
- PolynomialsException(String) - Constructor for exception com.irurueta.numerical.polynomials.PolynomialsException
-
Constructor with String containing message.
- PolynomialsException(String, Throwable) - Constructor for exception com.irurueta.numerical.polynomials.PolynomialsException
-
Constructor with message and cause.
- PolynomialsException(Throwable) - Constructor for exception com.irurueta.numerical.polynomials.PolynomialsException
-
Constructor with cause.
- polyParams - Variable in class com.irurueta.numerical.ComplexPolynomialEvaluator
-
Polynomial coefficients.
- polyParams - Variable in class com.irurueta.numerical.polynomials.Polynomial
-
Array containing parameters defining a polynomial.
- polyParams - Variable in class com.irurueta.numerical.RealPolynomialEvaluator
-
Polynomial coefficients.
- polyParams - Variable in class com.irurueta.numerical.roots.PolynomialRootsEstimator
-
Array containing parameters of a polynomial, taking into account that a polynomial of degree n is defined as: p(x) = a0 * x^n + a1 * x^(n - 1) + ... a(n-1) * x + an then the array of parameters is [a0, a1, ... a(n - 1), an]
- PowellMultiOptimizer - Class in com.irurueta.numerical.optimization
-
This class searches for a multi dimension function local minimum.
- PowellMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Empty constructor.
- PowellMultiOptimizer(MultiDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Constructor.
- PowellMultiOptimizer(MultiDimensionFunctionEvaluatorListener, double[], Matrix, double) - Constructor for class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Constructor.
- predict() - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Estimates subsequent model state without control parameters.
- predict(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Estimates subsequent model state.
- processNoiseCov - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Process noise covariance matrix (Q).
- progressDelta - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Amount of progress variation before notifying a progress change during estimation.
- progressDelta - Variable in class com.irurueta.numerical.robust.RobustEstimator
-
Amount of progress variation before notifying a progress change during estimation.
- PROMEDS - Enum constant in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
-
Progressive Median of Squares.
- PROMedSInliersData(int) - Constructor for class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Constructor.
- PROMedSPolynomialRobustEstimator - Class in com.irurueta.numerical.polynomials.estimators
-
Finds the best polynomial using PROMedS algorithm.
- PROMedSPolynomialRobustEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Constructor.
- PROMedSPolynomialRobustEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Constructor.
- PROMedSPolynomialRobustEstimator(int, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Constructor.
- PROMedSPolynomialRobustEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Constructor.
- PROMedSPolynomialRobustEstimator(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Constructor.
- PROMedSPolynomialRobustEstimator(PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Constructor.
- PROMedSPolynomialRobustEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Constructor.
- PROMedSPolynomialRobustEstimator(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Constructor.
- PROMedSRobustEstimator<T> - Class in com.irurueta.numerical.robust
-
This class implements PROMedS (PROgressive least Median Sample) algorithm to robustly estimate a data model.
- PROMedSRobustEstimator() - Constructor for class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Constructor.
- PROMedSRobustEstimator(PROMedSRobustEstimatorListener<T>) - Constructor for class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Constructor with listener.
- PROMedSRobustEstimator.PROMedSInliersData - Class in com.irurueta.numerical.robust
-
Contains data related to inliers estimated in one iteration.
- PROMedSRobustEstimatorListener<T> - Interface in com.irurueta.numerical.robust
-
Listener to get data samples and residuals for PROMedS method.
- PROSAC - Enum constant in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
-
Progressive Sample Consensus.
- PROSACInliersData(int, boolean, boolean) - Constructor for class com.irurueta.numerical.robust.PROSACRobustEstimator.PROSACInliersData
- PROSACPolynomialRobustEstimator - Class in com.irurueta.numerical.polynomials.estimators
-
Finds the best polynomial using PROSAC algorithm.
- PROSACPolynomialRobustEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Constructor.
- PROSACPolynomialRobustEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Constructor.
- PROSACPolynomialRobustEstimator(int, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Constructor.
- PROSACPolynomialRobustEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Constructor.
- PROSACPolynomialRobustEstimator(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Constructor.
- PROSACPolynomialRobustEstimator(PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Constructor.
- PROSACPolynomialRobustEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Constructor.
- PROSACPolynomialRobustEstimator(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Constructor.
- PROSACRobustEstimator<T> - Class in com.irurueta.numerical.robust
-
This class implements PROSAC (PROgressive random SAmple Consensus) algorithm to robustly estimate a data model.
- PROSACRobustEstimator() - Constructor for class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Constructor.
- PROSACRobustEstimator(PROSACRobustEstimatorListener<T>) - Constructor for class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Constructor with listener.
- PROSACRobustEstimator.PROSACInliersData - Class in com.irurueta.numerical.robust
-
Contains data related to estimated inliers.
- PROSACRobustEstimatorListener<T> - Interface in com.irurueta.numerical.robust
-
Listener to get data samples and residuals for PROSAC method
- pts - Variable in class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
-
Matrix containing points to interpolate from.
Q
- q - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
-
Estimated goodness-of-fit probability (i.e. that the fit would have a chi square value equal or larger than the estimated one).
- q - Variable in class com.irurueta.numerical.integration.QuadratureIntegrator
-
Quadrature used for integration.
- q - Variable in class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Quadrature used for integration.
- q - Variable in class com.irurueta.numerical.integration.RombergIntegrator
-
Quadrature used for integration.
- q - Variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Quadrature used for integration.
- q - Variable in class com.irurueta.numerical.integration.SimpsonIntegrator
-
Quadrature used for integration.
- q - Variable in class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Quadrature used for integration.
- q - Variable in class com.irurueta.numerical.PadeApproximantEstimator
-
Contains matrix to solve Padé coefficients.
- Quadrature - Class in com.irurueta.numerical.integration
-
Abstract base class for elementary quadrature algorithms used for function integration.
- Quadrature() - Constructor for class com.irurueta.numerical.integration.Quadrature
- QUADRATURE - Enum constant in enum class com.irurueta.numerical.integration.IntegratorType
-
Quadrature integrator.
- QuadratureIntegrator<T extends Quadrature> - Class in com.irurueta.numerical.integration
-
Integrates functions given a quadrature implementation up to desired accuracy.
- QuadratureIntegrator(T, double) - Constructor for class com.irurueta.numerical.integration.QuadratureIntegrator
-
Constructor.
- QuadratureMatrixIntegrator<T extends MatrixQuadrature> - Class in com.irurueta.numerical.integration
-
Integrates matrix (multivariate) single dimension functions given a quadrature implementation up to desired accuracy.
- QuadratureMatrixIntegrator(T, double) - Constructor for class com.irurueta.numerical.integration.QuadratureMatrixIntegrator
-
Constructor.
- QuadratureType - Enum Class in com.irurueta.numerical.integration
-
Indicates type of quadrature.
- QuadratureType() - Constructor for enum class com.irurueta.numerical.integration.QuadratureType
- qualityScores - Variable in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Quality scores corresponding to each provided polynomial evaluation.
- qualityScores - Variable in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Quality scores corresponding to each provided polynomial evaluation.
- QuasiNewtonMultiOptimizer - Class in com.irurueta.numerical.optimization
-
This class searches for a multi dimension function local minimum.
- QuasiNewtonMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Empty constructor.
- QuasiNewtonMultiOptimizer(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Constructor.
- QuasiNewtonMultiOptimizer(MultiDimensionFunctionEvaluatorListener, GradientFunctionEvaluatorListener, double[], double) - Constructor for class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Constructor.
R
- R - Static variable in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
-
Golden ratio.
- r0 - Variable in class com.irurueta.numerical.interpolation.GaussianRadialBasisFunction
-
Scale factor.
- r0 - Variable in class com.irurueta.numerical.interpolation.ThinPlateRadialBasisFunction
-
Scale factor.
- r02 - Variable in class com.irurueta.numerical.interpolation.InverseMultiQuadricRadialBasisFunction
-
Squared r0 value, which is a scale factor.
- r02 - Variable in class com.irurueta.numerical.interpolation.MultiQuadricRadialBasisFunction
-
Squared r0 value, which is a scale factor.
- rad(double[], double[]) - Method in class com.irurueta.numerical.interpolation.BaseRadialBasisFunctionInterpolator
-
Computes the euclidean distance between two points.
- rad(double[], double[]) - Method in class com.irurueta.numerical.interpolation.CurveInterpolator
-
Computes the euclidean distance between two points.
- RadialBasisFunction - Interface in com.irurueta.numerical.interpolation
-
Interface defining a Radial Basis Function (RBF) to be used for interpolation.
- RadialBasisFunctionInterpolator - Class in com.irurueta.numerical.interpolation
-
Interpolates sparsely defined points of dimension "dim" using a Radial Basis Function.
- RadialBasisFunctionInterpolator(Matrix, double[], RadialBasisFunction) - Constructor for class com.irurueta.numerical.interpolation.RadialBasisFunctionInterpolator
-
Constructor.
- RadialBasisFunctionInterpolator(Matrix, double[], RadialBasisFunction, boolean) - Constructor for class com.irurueta.numerical.interpolation.RadialBasisFunctionInterpolator
-
Constructor.
- randomizer - Variable in class com.irurueta.numerical.robust.FastRandomSubsetSelector
-
Randomizer to pick random indexes.
- RANSAC - Enum constant in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
-
Random Sample Consensus.
- RANSACInliersData(int, boolean, boolean) - Constructor for class com.irurueta.numerical.robust.RANSACRobustEstimator.RANSACInliersData
-
Constructor.
- RANSACPolynomialRobustEstimator - Class in com.irurueta.numerical.polynomials.estimators
-
Finds the best polynomial using RANSAC algorithm.
- RANSACPolynomialRobustEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Constructor.
- RANSACPolynomialRobustEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Constructor.
- RANSACPolynomialRobustEstimator(int, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Constructor.
- RANSACPolynomialRobustEstimator(int, List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Constructor.
- RANSACPolynomialRobustEstimator(int, List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Constructor.
- RANSACPolynomialRobustEstimator(PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Constructor.
- RANSACPolynomialRobustEstimator(List<PolynomialEvaluation>) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Constructor.
- RANSACPolynomialRobustEstimator(List<PolynomialEvaluation>, PolynomialRobustEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Constructor.
- RANSACRobustEstimator<T> - Class in com.irurueta.numerical.robust
-
This class implements RANSAC (RANdom SAmple Consensus) algorithm to robustly estimate a data model.
- RANSACRobustEstimator() - Constructor for class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Constructor.
- RANSACRobustEstimator(RANSACRobustEstimatorListener<T>) - Constructor for class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Constructor with listener.
- RANSACRobustEstimator.RANSACInliersData - Class in com.irurueta.numerical.robust
-
Contains data related to estimated inliers.
- RANSACRobustEstimatorListener<T> - Interface in com.irurueta.numerical.robust
-
Listener to get data samples and residuals for RANSAC method
- RationalInterpolator - Class in com.irurueta.numerical.interpolation
-
Computes rational interpolation.
- RationalInterpolator(double[], double[]) - Constructor for class com.irurueta.numerical.interpolation.RationalInterpolator
-
Constructor.
- RationalInterpolator(double[], double[], int) - Constructor for class com.irurueta.numerical.interpolation.RationalInterpolator
-
Constructor.
- rawinterp(int, double) - Method in class com.irurueta.numerical.interpolation.BarycentricRationalInterpolator
-
Actual interpolation method.
- rawinterp(int, double) - Method in class com.irurueta.numerical.interpolation.BaseInterpolator
-
Actual interpolation method to be implemented by subclasses.
- rawinterp(int, double) - Method in class com.irurueta.numerical.interpolation.CubicSplineInterpolator
-
Actual interpolation method.
- rawinterp(int, double) - Method in class com.irurueta.numerical.interpolation.LinearInterpolator
-
Actual interpolation method to be implemented by subclasses.
- rawinterp(int, double) - Method in class com.irurueta.numerical.interpolation.PolynomialInterpolator
-
Actual interpolation method.
- rawinterp(int, double) - Method in class com.irurueta.numerical.interpolation.RationalInterpolator
-
Actual interpolation method.
- rdist(double[], double[]) - Method in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Computes euclidean distance between two points.
- RealPolynomialEvaluator - Class in com.irurueta.numerical
-
Utility class to evaluate real polynomials.
- RealPolynomialEvaluator(double[]) - Constructor for class com.irurueta.numerical.RealPolynomialEvaluator
-
Constructor.
- realPolyParams - Variable in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Array containing parameters of a first degree polynomial.
- realPolyParams - Variable in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Array containing parameters of a second degree polynomial.
- realPolyParams - Variable in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Array containing parameters of a second degree polynomial.
- reference - Static variable in class com.irurueta.numerical.BuildInfo
-
Singleton stored in a soft reference (to keep it cached in memory unless memory is claimed).
- relativeError(int, int) - Method in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Estimates relative error achieved by this algorithm for provided input values.
- REPEAT_EDGE - Enum constant in enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
-
When convolution kernel reaches edge of signal being convoluted, it is assumed that the signal is repeated indefinitely.
- residual - Variable in class com.irurueta.numerical.PadeApproximantEstimator
-
Contains residual to iteratively improve LU solution.
- residuals - Variable in class com.irurueta.numerical.robust.InliersData
-
Residuals obtained for each sample of data.
- Result(double[], double[]) - Constructor for class com.irurueta.numerical.PadeApproximantEstimator.Result
-
Constructor.
- resultAvailable - Variable in class com.irurueta.numerical.fitting.Fitter
-
Indicates whether result has been estimated and is available for retrieval
- resultAvailable - Variable in class com.irurueta.numerical.optimization.MultiOptimizer
-
Boolean indicating whether a minimum has already been found or not.
- resultAvailable - Variable in class com.irurueta.numerical.optimization.SingleOptimizer
-
Boolean indicating whether a minimum has been found and is available for retrieval.
- reverse(int[]) - Static method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Reverses provided array.
- reverse(int[]) - Static method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Reverses provided array.
- RidderSingleRootEstimator - Class in com.irurueta.numerical.roots
-
Computes a root for a single dimension function inside a given bracket of values, in other words, root will only be searched within provided minimum and maximum evaluation points.
- RidderSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.RidderSingleRootEstimator
-
Empty constructor.
- RidderSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.RidderSingleRootEstimator
-
Constructor.
- RobustEstimator<T> - Class in com.irurueta.numerical.robust
-
Robust estimator to estimate some object in a robust manner
- RobustEstimator() - Constructor for class com.irurueta.numerical.robust.RobustEstimator
-
Constructor.
- RobustEstimator(RobustEstimatorListener<T>) - Constructor for class com.irurueta.numerical.robust.RobustEstimator
-
Constructor.
- RobustEstimatorException - Exception in com.irurueta.numerical.robust
-
Raised if estimation on a RobustEstimator fails.
- RobustEstimatorException() - Constructor for exception com.irurueta.numerical.robust.RobustEstimatorException
-
Constructor.
- RobustEstimatorException(String) - Constructor for exception com.irurueta.numerical.robust.RobustEstimatorException
-
Constructor with String containing message.
- RobustEstimatorException(String, Throwable) - Constructor for exception com.irurueta.numerical.robust.RobustEstimatorException
-
Constructor with message and cause.
- RobustEstimatorException(Throwable) - Constructor for exception com.irurueta.numerical.robust.RobustEstimatorException
-
Constructor with cause.
- RobustEstimatorListener<T> - Interface in com.irurueta.numerical.robust
-
Listener to be notified of events on a robust estimator such as when estimation starts, ends or when progress changes.
- RobustEstimatorMethod - Enum Class in com.irurueta.numerical.robust
-
Enumerator containing different robust estimation algorithms.
- RobustEstimatorMethod() - Constructor for enum class com.irurueta.numerical.robust.RobustEstimatorMethod
- ROMBERG - Enum constant in enum class com.irurueta.numerical.integration.IntegratorType
-
Romberg integrator.
- RombergDoubleExponentialRuleQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg's method and double exponential quadrature.
- RombergDoubleExponentialRuleQuadratureIntegrator(double, double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
-
Constructor with default accuracy.
- RombergDoubleExponentialRuleQuadratureIntegrator(double, double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
-
Constructor.
- RombergDoubleExponentialRuleQuadratureIntegrator(double, double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
-
Constructor with default accuracy.
- RombergDoubleExponentialRuleQuadratureIntegrator(double, double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
-
Constructor.
- RombergDoubleExponentialRuleQuadratureIntegrator(double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
-
Constructor with default accuracy and default maximum step size.
- RombergDoubleExponentialRuleQuadratureIntegrator(double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
-
Constructor with default maximum step size.
- RombergDoubleExponentialRuleQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
-
Constructor with default accuracy and default maximum step size.
- RombergDoubleExponentialRuleQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureIntegrator
-
Constructor.
- RombergDoubleExponentialRuleQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg's method and double exponential quadrature.
- RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor.
- RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor.
- RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default accuracy and default maximum step size.
- RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor.
- RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default accuracy and default maximum step size.
- RombergDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor.
- RombergExponentialMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg's method and exponential quadrature.
- RombergExponentialMidPointQuadratureIntegrator(double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergExponentialMidPointQuadratureIntegrator
-
Constructor with default accuracy.
- RombergExponentialMidPointQuadratureIntegrator(double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergExponentialMidPointQuadratureIntegrator
-
Constructor.
- RombergExponentialMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg's method and exponential quadrature.
- RombergExponentialMidPointQuadratureMatrixIntegrator(double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergExponentialMidPointQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- RombergExponentialMidPointQuadratureMatrixIntegrator(double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergExponentialMidPointQuadratureMatrixIntegrator
-
Constructor.
- RombergInfinityMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg's method and Infinity mid-point quadrature.
- RombergInfinityMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergInfinityMidPointQuadratureIntegrator
-
Constructor.
- RombergInfinityMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergInfinityMidPointQuadratureIntegrator
-
Constructor.
- RombergInfinityMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg's method and Infinity mid-point quadrature.
- RombergInfinityMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergInfinityMidPointQuadratureMatrixIntegrator
-
Constructor.
- RombergInfinityMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergInfinityMidPointQuadratureMatrixIntegrator
-
Constructor.
- RombergIntegrator<T extends Quadrature> - Class in com.irurueta.numerical.integration
-
Base integrator for implementations based on Romberg's method.
- RombergIntegrator(T, double) - Constructor for class com.irurueta.numerical.integration.RombergIntegrator
-
Constructor.
- RombergLowerSquareRootMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg's method and Lower Square Root Mid-Point Quadrature when lower integration bound lies at a function singularity.
- RombergLowerSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergLowerSquareRootMidPointQuadratureIntegrator
-
Constructor with default accuracy.
- RombergLowerSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergLowerSquareRootMidPointQuadratureIntegrator
-
Constructor.
- RombergLowerSquareRootMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg's method and Lower Square Root Mid-Point Quadrature when lower integration bound lies at a function singularity.
- RombergLowerSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergLowerSquareRootMidPointQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- RombergLowerSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergLowerSquareRootMidPointQuadratureMatrixIntegrator
-
Constructor.
- RombergMatrixIntegrator<T extends MatrixQuadrature> - Class in com.irurueta.numerical.integration
-
Base integrator for implementations based on Romberg's method.
- RombergMatrixIntegrator(T, double) - Constructor for class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Constructor.
- RombergMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg's method and Mid-Point Quadrature.
- RombergMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergMidPointQuadratureIntegrator
-
Constructor with default accuracy.
- RombergMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergMidPointQuadratureIntegrator
-
Constructor.
- RombergMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg's method and Mid-Point Quadrature.
- RombergMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergMidPointQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- RombergMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergMidPointQuadratureMatrixIntegrator
-
Constructor.
- RombergTrapezoidalQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg integration.
- RombergTrapezoidalQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
-
Constructor with default accuracy.
- RombergTrapezoidalQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
-
Constructor.
- RombergTrapezoidalQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes matrix function integration by using Romberg integration.
- RombergTrapezoidalQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- RombergTrapezoidalQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
-
Constructor.
- RombergUpperSquareRootMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg's method and Upper Square Root Mid-Point Quadrature when upper integration bound lies at a function singularity.
- RombergUpperSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergUpperSquareRootMidPointQuadratureIntegrator
-
Constructor with default accuracy.
- RombergUpperSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergUpperSquareRootMidPointQuadratureIntegrator
-
Constructor.
- RombergUpperSquareRootMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Romberg's method and Upper Square Root Mid-Point Quadrature when upper integration bound lies at a function singularity.
- RombergUpperSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.RombergUpperSquareRootMidPointQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- RombergUpperSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.RombergUpperSquareRootMidPointQuadratureMatrixIntegrator
-
Constructor.
- root - Variable in class com.irurueta.numerical.roots.SingleRootEstimator
-
Root that has been found.
- ROOT_THREE - Static variable in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Constant defining the squared root of three.
- rootAvailable - Variable in class com.irurueta.numerical.roots.SingleRootEstimator
-
Boolean indicating that a root has been computed and is available to be retrieved.
- RootEstimationException - Exception in com.irurueta.numerical.roots
-
Raised when a root estimator cannot determine a root of a polynomial, usually because of lack of convergence
- RootEstimationException() - Constructor for exception com.irurueta.numerical.roots.RootEstimationException
-
Constructor.
- RootEstimationException(String) - Constructor for exception com.irurueta.numerical.roots.RootEstimationException
-
Constructor with String containing message.
- RootEstimationException(String, Throwable) - Constructor for exception com.irurueta.numerical.roots.RootEstimationException
-
Constructor with message and cause.
- RootEstimationException(Throwable) - Constructor for exception com.irurueta.numerical.roots.RootEstimationException
-
Constructor with cause.
- RootEstimator - Class in com.irurueta.numerical.roots
-
Abstract class to find roots of functions.
- RootEstimator() - Constructor for class com.irurueta.numerical.roots.RootEstimator
-
Constructor.
- roots - Variable in class com.irurueta.numerical.roots.PolynomialRootsEstimator
-
Array containing estimated roots.
- rows - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Number of rows of matrix to be estimated.
- rows - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Number of rows of quadrature result.
- rows - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Number of rows of quadrature result.
- rows - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Number of rows of quadrature result.
S
- s - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Value of the next stage of refinement.
- s - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleQuadrature
-
Value of the next stage of refinement.
- s - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Current value of integral.
- s - Variable in class com.irurueta.numerical.integration.MidPointQuadrature
-
Current value of integral.
- s - Variable in class com.irurueta.numerical.integration.RombergIntegrator
-
Successive trapezoidal approximations.
- s - Variable in class com.irurueta.numerical.integration.RombergMatrixIntegrator
-
Successive trapezoidal approximations.
- s - Variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureIntegrator
-
Successive trapezoidal approximations.
- s - Variable in class com.irurueta.numerical.integration.RombergTrapezoidalQuadratureMatrixIntegrator
-
Successive trapezoidal approximations.
- s - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Current value of integral.
- s - Variable in class com.irurueta.numerical.integration.TrapezoidalQuadrature
-
Current value of integral.
- SafeNewtonRaphsonSingleRootEstimator - Class in com.irurueta.numerical.roots
-
Computes a root for a single dimension function inside a given bracket of values, in other words, root will only be searched within provided minimum and maximum evaluation points.
- SafeNewtonRaphsonSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
-
Empty constructor.
- SafeNewtonRaphsonSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
-
Constructor.
- SafeNewtonRaphsonSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
-
Constructor.
- sampleAverage - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
Estimated sample average.
- sampleCount - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
Number of samples used for estimation.
- sampleMatrix - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
A sample expressed in matrix form.
- sampleNoMean - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
A sample after removing its mean.
- SavitzkyGolayDerivativeEstimator - Class in com.irurueta.numerical
-
Class to estimate the derivative of a single dimension function at a given point.
- SavitzkyGolayDerivativeEstimator(SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.SavitzkyGolayDerivativeEstimator
-
Constructor.
- SavitzkyGolayGradientEstimator - Class in com.irurueta.numerical
-
Class to estimate the gradient of a multidimensional function.
- SavitzkyGolayGradientEstimator(MultiDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.SavitzkyGolayGradientEstimator
-
Constructor.
- SecantSingleRootEstimator - Class in com.irurueta.numerical.roots
-
Computes a root for a single dimension function inside a given bracket of values, in other words, root will only be searched within provided minimum and maximum evaluation points.
- SecantSingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.SecantSingleRootEstimator
-
Empty constructor.
- SecantSingleRootEstimator(SingleDimensionFunctionEvaluatorListener, double, double, double) - Constructor for class com.irurueta.numerical.roots.SecantSingleRootEstimator
-
Constructor.
- SecondDegreePolynomialRootsEstimator - Class in com.irurueta.numerical.roots
-
Class to estimate the roots of a second degree polynomial along with other polynomial properties.
- SecondDegreePolynomialRootsEstimator() - Constructor for class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Empty constructor.
- SecondDegreePolynomialRootsEstimator(double[]) - Constructor for class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Constructor.
- secondDerivative() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Replaces this instance by its second derivative.
- secondDerivative(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes second derivative of polynomial.
- secondDerivativeAndReturnNew() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Computes second derivative of polynomial.
- selected - Variable in class com.irurueta.numerical.robust.WeightSelection
-
Array indicating which correspondences have been selected (i.e. have a true value), and which ones hasn't (have a false value).
- selectedIndices - Variable in class com.irurueta.numerical.robust.FastRandomSubsetSelector
-
Set containing selected indices on a given run.
- selectWeights(double[], boolean, int) - Static method in class com.irurueta.numerical.robust.WeightSelection
-
Selects correspondences based on provided weights and creates a weight selection instance.
- setBeta(double) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Sets beta, which is the probability that a match is declared inlier by mistake, i.e. the ratio of the "inlier" surface by the total surface.
- setBeta(double) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Sets beta, which is the probability that a match is declared inlier by mistake, i.e. the ratio of the "inlier" surface by the total surface.
- setBracket(double, double) - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Sets the bracket of values (i.e. range of values) where the root will be searched.
- setBracket(double, double, double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Sets a bracket of values to later search for a minimum.
- setComputeAndKeepInliersEnabled(boolean) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Specifies whether inliers must be computed and kept.
- setComputeAndKeepInliersEnabled(boolean) - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Specifies whether inliers must be computed and kept.
- setComputeAndKeepResidualsEnabled(boolean) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Specifies whether residuals must be computed and kept.
- setComputeAndKeepResidualsEnabled(boolean) - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Specifies whether residuals must be computed and kept.
- setConfidence(double) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Sets amount of confidence expressed as a value between 0.0 and 1.0 (which is equivalent to 100%).
- setConfidence(double) - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- setConfidence(double) - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- setConfidence(double) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- setConfidence(double) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- setConfidence(double) - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
- setConstant(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Sets constant terms of integral.
- setConstants(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Sets constant terms of integral.
- setConstantValue(double) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Sets constant value to use during edge extension when CONSTANT_EDGE method is being used.
- setControlMatrix(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Sets the control matrix (B) (it is not used if there is no control).
- setCovarianceAdjusted(boolean) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Specifies whether covariance must be adjusted or not.
- setCovarianceAdjusted(boolean) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Specifies whether covariance must be adjusted or not.
- setCovarianceAdjusted(boolean) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Specifies whether covariance must be adjusted or not.
- setDegree(int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Sets degree of polynomial to be estimated.
- setDegree(int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Sets degree of polynomial to be estimated.
- setDegreeAndEvaluations(int, List<PolynomialEvaluation>) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Sets degree of polynomial to be estimated and collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of specified degree.
- setDegreeEvaluationsAndWeights(int, List<PolynomialEvaluation>, double[]) - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Sets degree of polynomial to be estimated and collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of specified degree.
- setDerivativeListener(SingleDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Sets derivative listener that gets function derivative.
- setDerivativeListener(SingleDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.roots.DerivativeSingleRootEstimator
-
Sets derivative listener to evaluate a function's derivative.
- setDerivativeOrder(int) - Method in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
-
Sets order of derivative.
- setEdgeMethod(ConvolverEdgeMethod) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Sets edge extension method to use during convolution when parts of the kernel are required to lie outside the signal's boundaries.
- setEndX(double) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Sets end point of interval being integrated.
- setErrorCovPost(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Sets the posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k).
- setErrorCovPre(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Sets the priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q).
- setEta0(double) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Sets eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
- setEta0(double) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Sets eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
- setEvaluation(double) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
-
Sets evaluation of polynomial at point x.
- setEvaluations(List<PolynomialEvaluation>) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Sets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
- setEvaluations(List<PolynomialEvaluation>) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Sets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
- setEvaluations(List<PolynomialEvaluation>) - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Sets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
- setEvaluationsAndWeights(List<PolynomialEvaluation>, double[]) - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Sets collection of polynomial evaluations along with their corresponding weights.
- setFunctionEvaluator(LevenbergMarquardtMultiDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Sets function evaluator to evaluate function at a given point and obtain function derivatives respect to each provided parameter.
- setFunctionEvaluator(LevenbergMarquardtMultiVariateFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Sets function evaluator to evaluate function at a given point and obtain function jacobian respect to each provided parameter.
- setFunctionEvaluator(LevenbergMarquardtSingleDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Sets function evaluator to evaluate function at a given point and obtain function derivatives respect to each provided parameter
- setFunctionEvaluator(LinearFitterMultiDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.MultiDimensionLinearFitter
-
Sets function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point
- setFunctionEvaluator(LinearFitterSingleDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
-
Sets function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point.
- setFunctionEvaluator(LinearFitterSingleDimensionFunctionEvaluator) - Method in class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Sets function evaluator to evaluate function at a given point and obtain the evaluation of function basis at such point.
- setGain(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Sets the Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R).
- setGaussianSigma(double) - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Sets Gaussian sigma to be used on each sample when aggregating Gaussian functions centered at each input data sample value.
- setGeometricDistanceUsed(boolean) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Specifies whether geometric distance will be used to find outliers or algebraic distance will be used instead.
- setGradientListener(GradientFunctionEvaluatorListener) - Method in class com.irurueta.numerical.DirectionalDerivativeEvaluator
-
Sets gradient listener that evaluates a multidimensional function gradient.
- setGradientListener(GradientFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Sets gradient listener in charge of obtaining gradient values for the function to be evaluated.
- setGradientListener(GradientFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Sets gradient listener.
- setGradientListener(GradientFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Sets gradient listener in charge of obtaining gradient values for the function to be evaluated.
- setHistogramInitialSolutionUsed(boolean) - Method in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Sets boolean that indicates that an initial coarse solution will be computed first by using an internal HistogramMaximumLikelihoodEstimator in order to initialize the internal BrentSingleOptimizer to obtain a more accurate solution.
- setInlierFactor(double) - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Sets factor to normalize or adjust threshold to determine inliers.
- setInlierFactor(double) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Sets factor to normalize or adjust threshold to determine inliers.
- setInputData(double[]) - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Sets array containing input data to be used to find the most likely value.
- setInputData(double[], double[]) - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Sets input data to fit a straight line to.
- setInputData(double[], double[], double) - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Sets required input data to start function fitting and assuming constant standard deviation errors in input data.
- setInputData(double[], double[], double[]) - Method in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Sets required input data to start function fitting.
- setInputData(double[], double, double) - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Sets array containing input data to be used to find the most likely value along with the minimum and maximum values assumed to be contained in it.
- setInputData(Matrix, double[], double) - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Sets required input data to start function fitting and assuming constant standard deviation errors in input data
- setInputData(Matrix, double[], double[]) - Method in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Sets required input data to start function fitting
- setInputData(Matrix, Matrix, double) - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Sets required input data to start function fitting and assuming constant standard deviation errors in input data.
- setInputData(Matrix, Matrix, double[]) - Method in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Sets required input data to start function fitting.
- setInputDataAndStandardDeviations(double[], double[], double[]) - Method in class com.irurueta.numerical.fitting.StraightLineFitter
-
Sets input data and standard deviations of input data to fit a straight line to.
- setIntegralOrder(int) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Sets integral order.
- setIntegralOrder(int) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Sets integral order.
- setItmax(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Sets maximum number of iterations.
- setItmax(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Sets maximum number of iterations.
- setItmax(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Sets maximum number of iterations.
- setKernel(double[]) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Sets kernel to convolve the signal with.
- setKernelCenter(int) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Sets position of kernel center.
- setListener(MultiDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.DirectionalEvaluator
-
Sets listener to evaluate a multidimensional function.
- setListener(MultiDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.MultiOptimizer
-
Sets listener to evaluate a multidimensional function.
- setListener(PolynomialEstimatorListener) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialEstimator
-
Sets listener to be notified of events such as when estimation starts, ends or estimation progress changes.
- setListener(PolynomialRobustEstimatorListener) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Sets listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
- setListener(RobustEstimatorListener<T>) - Method in class com.irurueta.numerical.robust.RobustEstimator
-
Sets listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
- setListener(Convolver1D.Convolver1DListener) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Sets listener in charge of attending events generated by this instance.
- setListener(SingleDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.optimization.SingleOptimizer
-
Sets listener.
- setListener(SingleDimensionFunctionEvaluatorListener) - Method in class com.irurueta.numerical.roots.SingleRootEstimator
-
Sets listener that evaluates a single dimension function in order to find its root.
- setLMSESolutionAllowed(boolean) - Method in class com.irurueta.numerical.polynomials.estimators.LMSEPolynomialEstimator
-
Specified if an LMSE (Least Mean Square Error) solution is allowed if more evaluations than the required minimum are provided.
- setMaxEvaluations(int) - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Sets maximum number of evaluations to be weighted and taken into account.
- setMaxIterations(int) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Sets maximum allowed number of iterations.
- setMaxIterations(int) - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Sets maximum allowed number of iterations.
- setMaxIterations(int) - Method in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Sets maximum allowed number of iterations.
- setMaxIterations(int) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Sets maximum allowed number of iterations.
- setMaxIterations(int) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Sets maximum allowed number of iterations.
- setMaxIterations(int) - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Sets maximum allowed number of iterations.
- setMaxOutliersProportion(double) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Sets maximum allowed outliers proportion in the input data.
- setMaxOutliersProportion(double) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Sets maximum allowed outliers proportion in the input data.
- setMeasurementMatrix(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Sets measurement matrix (H).
- setMeasurementNoiseCov(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Sets the measurement noise covariance matrix (R).
- setMeasureParameters(int) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Sets the number of measurement vector dimensions (measure parameters).
- setMinMaxValues(double, double) - Method in class com.irurueta.numerical.MaximumLikelihoodEstimator
-
Sets minimum and maximum value assumed to be found in input data array.
- setNdone(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Sets convergence parameter.
- setNdone(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Sets convergence parameter.
- setNdone(int) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Sets convergence parameter.
- setNumberOfBins(int) - Method in class com.irurueta.numerical.HistogramMaximumLikelihoodEstimator
-
Sets number of bins to be used on the histogram.
- setNumSamples(int) - Method in class com.irurueta.numerical.robust.SubsetSelector
-
Sets number of samples to select subsets from.
- setNumSelected(int) - Method in class com.irurueta.numerical.robust.WeightSelection
-
Sets number of correspondences that have been selected.
- setOnIterationCompletedListener(OnIterationCompletedListener) - Method in class com.irurueta.numerical.optimization.Optimizer
-
Sets listener to handle minimization events.
- setPointAndDirection(double[], double[]) - Method in class com.irurueta.numerical.DirectionalEvaluator
-
Sets point used as a reference to determine the function's input parameters along a line and the direction of the line where the function is evaluated.
- setPointAndDirections(double[], Matrix) - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Sets start point and set of directions to start looking for minimum.
- setPolishRootsEnabled(boolean) - Method in class com.irurueta.numerical.roots.LaguerrePolynomialRootsEstimator
-
Sets boolean indicating whether roots will be refined after an initial estimation.
- setPolynomialParameters(double[]) - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Set array of first degree polynomial parameters.
- setPolynomialParameters(double[]) - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Set array of second degree polynomial parameters.
- setPolynomialParameters(double[]) - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Set array of third degree polynomial parameters.
- setPolynomialParameters(Complex[]) - Method in class com.irurueta.numerical.roots.PolynomialRootsEstimator
-
Sets parameters of a polynomial, taking into account that a polynomial of degree n is defined as: p(x) = a0 * x^n + a1 * x^(n - 1) + ... a(n-1) * x + an then the array of parameters is [a0, a1, ... a(n - 1), an]
- setPolyParams(double...) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Sets array defining parameters of polynomial.
- setProcessNoiseCov(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Sets the process noise covariance matrix (Q).
- setProgressDelta(float) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Sets amount of progress variation before notifying a progress change during estimation.
- setProgressDelta(float) - Method in class com.irurueta.numerical.robust.RobustEstimator
-
Sets amount of progress variation before notifying a progress change during estimation.
- setQualityScores(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Sets quality scores corresponding to each polynomial evaluation.
- setQualityScores(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Sets quality scores corresponding to each provided point.
- setQualityScores(double[]) - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Sets quality scores corresponding to each provided point.
- setSelected(boolean[]) - Method in class com.irurueta.numerical.robust.WeightSelection
-
Sets array indicating which correspondences have been selected (i.e.
- setSignal(double[]) - Method in class com.irurueta.numerical.signal.processing.Convolver1D
-
Sets signal to be convolved.
- setSimplex(double[], double) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Sets a simplex defined as a central point and a set of surrounding points at distance delta.
- setSimplex(double[], double[]) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Sets a simplex defined as a central point and a set of surrounding points at their corresponding distance deltas[i], where "i" corresponds to one position of provided array of distances.
- setSimplex(Matrix) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Sets simplex as a matrix containing on each row a point of the simplex.
- setSortWeightsEnabled(boolean) - Method in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Specifies whether weights are sorted by so that largest weighted evaluations are used first.
- setStartPoint(double[]) - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Sets start point where local minimum is searched nearby.
- setStartPoint(double[]) - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Sets start point where local minimum is searched nearby.
- setStartPoint(double[]) - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Sets start point where local minimum is searched nearby.
- setStartPoint(double[]) - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Sets start point where algorithm will be started.
- setStartPointAndDirection(double[], double[]) - Method in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Internal method to set start point and direction to start the search for a local minimum.
- setStartPointAndDirection(double[], double[]) - Method in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Internal method to set start point and direction to start the search for a local minimum.
- setStartX(double) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Sets start point of interval being integrated.
- setStatePost(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Sets corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k)).
- setStatePre(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Sets predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k).
- setStopThreshold(double) - Method in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
- setStopThreshold(double) - Method in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
- setStopThreshold(double) - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Sets threshold to be used to keep the algorithm iterating in case that best threshold is not small enough.
- setStopThresholdEnabled(boolean) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Sets boolean indicating whether the algorithm must stop prematurely when dynamically computed threshold using median of residuals has a value lower than provided threshold in listener.
- setThreshold(double) - Method in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
- setThreshold(double) - Method in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
- setThreshold(double) - Method in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
- setTol(double) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Sets tolerance to reach convergence.
- setTol(double) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Sets tolerance to reach convergence.
- setTol(double) - Method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Sets tolerance to reach convergence.
- setTol(double) - Method in class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
-
Sets tolerance to define convergence threshold for SVD.
- setTol(double) - Method in class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
-
Sets tolerance to define convergence threshold for SVD.
- setTolerance(double) - Method in class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Sets algorithm's tolerance.
- setTolerance(double) - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Sets tolerance or accuracy to be expected on estimated local minimum.
- setTolerance(double) - Method in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Sets tolerance value.
- setTolerance(double) - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Sets tolerance or accuracy to be expected on estimated local minimum.
- setTolerance(double) - Method in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
-
Sets algorithm's tolerance.
- setTolerance(double) - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Sets tolerance or accuracy to be expected on estimated local minimum.
- setTolerance(double) - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Sets tolerance or accuracy to be expected on estimated local minimum.
- setTolerance(double) - Method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Sets tolerance or accuracy to be expected on estimated local minimum.
- setTolerance(double) - Method in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
-
Sets tolerance to find a root.
- setTolerance(double) - Method in class com.irurueta.numerical.roots.BrentSingleRootEstimator
-
Sets tolerance value.
- setTolerance(double) - Method in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
-
Sets tolerance to find a root.
- setTolerance(double) - Method in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
-
Sets tolerance value.
- setTolerance(double) - Method in class com.irurueta.numerical.roots.RidderSingleRootEstimator
-
Sets tolerance value.
- setTolerance(double) - Method in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
-
Sets tolerance value.
- setTolerance(double) - Method in class com.irurueta.numerical.roots.SecantSingleRootEstimator
-
Sets tolerance value.
- setTransitionMatrix(Matrix) - Method in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Sets the state transition matrix (A).
- setUseInlierThresholds(boolean) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Sets flag indicating whether thresholds to determine inliers are used, or if only median of residuals is used.
- setUsePolakRibiere(boolean) - Method in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Sets boolean indicating whether Polak-Ribiere method or Fletcher-Reeves method is used.
- setUsePolakRibiere(boolean) - Method in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Sets boolean indicating whether Polak-Ribiere method or Fletcher-Reeves method is used.
- setX(double) - Method in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
-
Sets point where polynomial derivative has been evaluated.
- setX(double) - Method in class com.irurueta.numerical.polynomials.estimators.DirectPolynomialEvaluation
-
Sets point where polynomial has been evaluated.
- setX(double) - Method in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Sets point where nth-polynomial integral has been evaluated.
- setY2(double[], double[], double, double) - Method in class com.irurueta.numerical.interpolation.CubicSplineInterpolator
-
This method stores an array y2[0..n-1] with second derivatives of the interpolating function at the tabulated points pointed to by xv, using function values pointed to by yv.
- ShepardInterpolator - Class in com.irurueta.numerical.interpolation
-
Interpolates sparsely defined points of dimension "dim" using Shepard interpolation, which is a simplification of Radial Basis Function interpolation that achieves less accurate results but having less computational cost.
- ShepardInterpolator(Matrix, double[]) - Constructor for class com.irurueta.numerical.interpolation.ShepardInterpolator
-
Constructor using default p parameter, which is equal to 2.0.
- ShepardInterpolator(Matrix, double[], double) - Constructor for class com.irurueta.numerical.interpolation.ShepardInterpolator
-
Constructor.
- shift2(double[], double[], double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Pushes "b" value into "a", and "c" value into "b".
- shift3(double[], double[], double[], double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Pushes "b" value into "a", and "c" value into "b" and "d" value into "c".
- sig - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Standard deviations of each pair of points (x, y).
- sig - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Standard deviations of each pair of points (x, y).
- sig - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Standard deviations of each pair of points (x,y).
- sig - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
-
Standard deviations of each pair of points (x,y).
- siga - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
-
Estimated standard deviation of parameter "a".
- sigb - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
-
Estimated standard deviation of parameter "b".
- sigdat - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
-
Estimated standard deviation of provided input data.
- sign(double, double) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Internal method to determine whether a and b have the same sign.
- sign(double, double) - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Internal method to determine whether a and b have the same sign.
- signal - Variable in class com.irurueta.numerical.signal.processing.Convolver1D
-
Signal to be convolved.
- SignalProcessingException - Exception in com.irurueta.numerical.signal.processing
-
Raised when something fails during signal processing.
- SignalProcessingException() - Constructor for exception com.irurueta.numerical.signal.processing.SignalProcessingException
-
Constructor.
- SignalProcessingException(String) - Constructor for exception com.irurueta.numerical.signal.processing.SignalProcessingException
-
Constructor with String containing message.
- SignalProcessingException(String, Throwable) - Constructor for exception com.irurueta.numerical.signal.processing.SignalProcessingException
-
Constructor with message and cause.
- SignalProcessingException(Throwable) - Constructor for exception com.irurueta.numerical.signal.processing.SignalProcessingException
-
Constructor with cause.
- SimpleInterpolatingPolynomialEstimator - Class in com.irurueta.numerical.interpolation
-
Estimates coefficients of a polynomial passing through provided set of x and y points.
- SimpleInterpolatingPolynomialEstimator() - Constructor for class com.irurueta.numerical.interpolation.SimpleInterpolatingPolynomialEstimator
- SimpleSingleDimensionLinearFitter - Class in com.irurueta.numerical.fitting
-
Fits provided data (x,y) to a function made of a linear combination of functions used as a basis (i.e. f(x) = a * f0(x) + b * f1(x) + ...).
- SimpleSingleDimensionLinearFitter() - Constructor for class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
-
Constructor.
- SimpleSingleDimensionLinearFitter(double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
-
Constructor.
- SimpleSingleDimensionLinearFitter(double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
-
Constructor.
- SimpleSingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
-
Constructor.
- SimpleSingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator, double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
-
Constructor.
- SimpleSingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator, double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
-
Constructor.
- SimplexMultiOptimizer - Class in com.irurueta.numerical.optimization
-
This class searches for a multi dimension function local minimum.
- SimplexMultiOptimizer() - Constructor for class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Empty constructor.
- SimplexMultiOptimizer(MultiDimensionFunctionEvaluatorListener, double[], double[], double) - Constructor for class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Constructor.
- SimplexMultiOptimizer(MultiDimensionFunctionEvaluatorListener, double[], double, double) - Constructor for class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Constructor.
- SimplexMultiOptimizer(MultiDimensionFunctionEvaluatorListener, Matrix, double) - Constructor for class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Constructor.
- SIMPSON - Enum constant in enum class com.irurueta.numerical.integration.IntegratorType
-
Simpson integrator.
- SimpsonDoubleExponentialRuleQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Simpson's method and double exponential quadrature.
- SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
-
Constructor with default accuracy.
- SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
-
Constructor.
- SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
-
Constructor with default accuracy.
- SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
-
Constructor.
- SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
-
Constructor with default accuracy and default maximum step size.
- SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, DoubleExponentialSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
-
Constructor with default maximum step size.
- SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
-
Constructor with default accuracy and default maximum step size.
- SimpsonDoubleExponentialRuleQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureIntegrator
-
Constructor.
- SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Simpson's method and double exponential quadrature.
- SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor.
- SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor.
- SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default accuracy and default maximum step size.
- SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, DoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default maximum step size.
- SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor with default accuracy and default maximum step size.
- SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonDoubleExponentialRuleQuadratureMatrixIntegrator
-
Constructor.
- SimpsonInfinityMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Simpson's rule and infinity mid-point quadrature.
- SimpsonInfinityMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonInfinityMidPointQuadratureIntegrator
-
Constructor.
- SimpsonInfinityMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonInfinityMidPointQuadratureIntegrator
-
Constructor.
- SimpsonInfinityMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Simpson's rule and infinity mid-point quadrature.
- SimpsonInfinityMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonInfinityMidPointQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- SimpsonInfinityMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonInfinityMidPointQuadratureMatrixIntegrator
-
Constructor.
- SimpsonIntegrator<T extends Quadrature> - Class in com.irurueta.numerical.integration
-
Base integrator for implementations based on Simpson's method.
- SimpsonIntegrator(T, double) - Constructor for class com.irurueta.numerical.integration.SimpsonIntegrator
-
Constructor.
- SimpsonLowerSquareRootMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Simpson's rule and Lower Square Root mid-point quadrature when lower integration bound lies at a function singularity.
- SimpsonLowerSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonLowerSquareRootMidPointQuadratureIntegrator
-
Constructor.
- SimpsonLowerSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonLowerSquareRootMidPointQuadratureIntegrator
-
Constructor.
- SimpsonLowerSquareRootMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Simpson's rule and Lower Square Root mid-point quadrature when lower integration bound lies at a function singularity.
- SimpsonLowerSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonLowerSquareRootMidPointQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- SimpsonLowerSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonLowerSquareRootMidPointQuadratureMatrixIntegrator
-
Constructor.
- SimpsonMatrixIntegrator<T extends MatrixQuadrature> - Class in com.irurueta.numerical.integration
-
Base integrator for implementations based on Simpson's method.
- SimpsonMatrixIntegrator(T, double) - Constructor for class com.irurueta.numerical.integration.SimpsonMatrixIntegrator
-
Constructor.
- SimpsonMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Simpson's rule and mid-point quadrature.
- SimpsonMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonMidPointQuadratureIntegrator
-
Constructor.
- SimpsonMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonMidPointQuadratureIntegrator
-
Constructor.
- SimpsonMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Simpson's rule and mid-point quadrature.
- SimpsonMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonMidPointQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- SimpsonMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonMidPointQuadratureMatrixIntegrator
-
Constructor.
- SimpsonTrapezoidalQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Simpson's rule and trapezoidal quadrature.
- SimpsonTrapezoidalQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonTrapezoidalQuadratureIntegrator
-
Constructor with default accuracy.
- SimpsonTrapezoidalQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonTrapezoidalQuadratureIntegrator
-
Constructor.
- SimpsonTrapezoidalQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes matrix function integration by using Simpson's rule and trapezoidal quadrature.
- SimpsonTrapezoidalQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonTrapezoidalQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- SimpsonTrapezoidalQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonTrapezoidalQuadratureMatrixIntegrator
-
Constructor.
- SimpsonUpperSquareRootMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Simpson's rule an Upper Square Root mid-point quadrature when upper integration bound lies at a function singularity.
- SimpsonUpperSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonUpperSquareRootMidPointQuadratureIntegrator
-
Constructor.
- SimpsonUpperSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonUpperSquareRootMidPointQuadratureIntegrator
-
Constructor.
- SimpsonUpperSquareRootMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Simpson's rule an Upper Square Root mid-point quadrature when upper integration bound lies at a function singularity.
- SimpsonUpperSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.SimpsonUpperSquareRootMidPointQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- SimpsonUpperSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.SimpsonUpperSquareRootMidPointQuadratureMatrixIntegrator
-
Constructor.
- singleCov - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
A covariance matrix for a single sample.
- SingleDimensionFitter - Class in com.irurueta.numerical.fitting
-
Base class to fit a single dimension function y = f(x) by using provided data (x, y)
- SingleDimensionFitter() - Constructor for class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Constructor.
- SingleDimensionFitter(double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Constructor.
- SingleDimensionFitter(double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Constructor.
- SingleDimensionFunctionEvaluatorListener - Interface in com.irurueta.numerical
-
Interface to define how single dimension functions can be evaluated.
- SingleDimensionLinearFitter - Class in com.irurueta.numerical.fitting
-
Base class to fit provided data (x,y) to a function made of a linear combination of functions used as a basis (i.e. f(x) = a * f0(x) + b * f1(x) + ...).
- SingleDimensionLinearFitter() - Constructor for class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Constructor.
- SingleDimensionLinearFitter(double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Constructor.
- SingleDimensionLinearFitter(double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Constructor.
- SingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Constructor.
- SingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator, double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Constructor.
- SingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator, double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SingleDimensionLinearFitter
-
Constructor.
- SingleOptimizer - Class in com.irurueta.numerical.optimization
-
Abstract class to find minima on single dimension functions.
- SingleOptimizer() - Constructor for class com.irurueta.numerical.optimization.SingleOptimizer
-
Empty constructor.
- SingleOptimizer(SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.optimization.SingleOptimizer
-
Constructor with listener.
- SingleRootEstimator - Class in com.irurueta.numerical.roots
-
Abstract class to find roots of single dimension functions.
- SingleRootEstimator() - Constructor for class com.irurueta.numerical.roots.SingleRootEstimator
-
Empty constructor.
- SingleRootEstimator(SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.roots.SingleRootEstimator
-
Constructor.
- solveCubic(double, double, double, double, Complex, Complex, Complex) - Method in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Finds 3rd degree polynomial roots
- solveLinear(double, double) - Method in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Internal method to estimate a root on a first degree polynomial.
- solveQuadratic(double, double, double, Complex, Complex) - Method in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Finds 2nd degree polynomial roots
- sortWeights - Variable in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Indicates if weights are sorted by default so that largest weighted evaluations are used first.
- sqr(double) - Static method in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Computes squared value.
- sqr(double) - Method in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Computes the squared value of provided double.
- sqr(double) - Method in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Computes the squared value of provided double.
- srp - Variable in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
-
Array of one dimensional cubic spline interpolators.
- srp - Variable in class com.irurueta.numerical.interpolation.CurveInterpolator
-
Array of one dimensional cubic spline interpolators.
- standardDeviation - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
-
Standard deviation of error among all provided samples respect to currently estimated result.
- standardDeviation - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Standard deviation of error among all provided samples respect to currently estimated result.
- startX - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
-
Start point of interval being integrated.
- statePost - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
- statePre - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
- STD_CONSTANT - Static variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Constant to estimate standard deviation of residuals based on their median.
- STD_CONSTANT - Static variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Constant to estimate standard deviation of residuals based on their median.
- stopThreshold - Variable in class com.irurueta.numerical.polynomials.estimators.LMedSPolynomialRobustEstimator
-
Threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
- stopThreshold - Variable in class com.irurueta.numerical.polynomials.estimators.PROMedSPolynomialRobustEstimator
-
Threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
- stopThreshold - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Threshold to be used to keep the algorithm iterating in case that best threshold is not small enough.
- stopThresholdEnabled - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Indicates whether the algorithm must stop prematurely when dynamically computed threshold using median of residuals has a value lower than provided threshold in listener.
- STPMX - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Scaled maximum step length allowed in line searches.
- StraightLineFitter - Class in com.irurueta.numerical.fitting
-
Fits provided data (x,y) to a straight line following equation y = a + b*x, estimates parameters a and b their variances, covariance and their chi square value.
- StraightLineFitter() - Constructor for class com.irurueta.numerical.fitting.StraightLineFitter
-
Constructor.
- StraightLineFitter(double[], double[]) - Constructor for class com.irurueta.numerical.fitting.StraightLineFitter
-
Constructor.
- StraightLineFitter(double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.StraightLineFitter
-
Constructor.
- subsetSelector - Variable in class com.irurueta.numerical.robust.LMedSRobustEstimator
-
Instance in charge of picking random subsets of samples.
- subsetSelector - Variable in class com.irurueta.numerical.robust.MSACRobustEstimator
-
Instance in charge of picking random subsets of samples.
- subsetSelector - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Instance in charge of picking random subsets of samples.
- subsetSelector - Variable in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Instance in charge of picking random subsets of samples.
- subsetSelector - Variable in class com.irurueta.numerical.robust.RANSACRobustEstimator
-
Instance in charge of picking random subsets of samples.
- SubsetSelector - Class in com.irurueta.numerical.robust
-
Base class to pick subsets of samples.
- SubsetSelector(int) - Constructor for class com.irurueta.numerical.robust.SubsetSelector
-
Constructor.
- SubsetSelectorException - Exception in com.irurueta.numerical.robust
-
Raised if subset selection of samples fails.
- SubsetSelectorException() - Constructor for exception com.irurueta.numerical.robust.SubsetSelectorException
-
Constructor.
- SubsetSelectorException(String) - Constructor for exception com.irurueta.numerical.robust.SubsetSelectorException
-
Constructor with String containing message.
- SubsetSelectorException(String, Throwable) - Constructor for exception com.irurueta.numerical.robust.SubsetSelectorException
-
Constructor with message and cause.
- SubsetSelectorException(Throwable) - Constructor for exception com.irurueta.numerical.robust.SubsetSelectorException
-
Constructor with cause.
- SubsetSelectorType - Enum Class in com.irurueta.numerical.robust
-
Enumerator containing supported types of subset selectors to pick random samples for robust estimators.
- SubsetSelectorType() - Constructor for enum class com.irurueta.numerical.robust.SubsetSelectorType
- subtract(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Subtracts another polynomial form this one.
- subtract(Polynomial, Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Subtract other polynomial from this one and stores the result into provided instance.
- subtractAndReturnNew(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Subtract other polynomial from this one and returns a new polynomial as a result.
- sum - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Temporary value storing summation of evaluations.
- sum - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Temporary value storing summation of evaluations.
- sum - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Temporary value storing summation of evaluations.
- SvdMultiDimensionLinearFitter - Class in com.irurueta.numerical.fitting
-
Fits provided data (x,y) to a function made of a linear combination of functions used as a basis (i.e. f(x1, x2, ...) = a * f0(x1, x2, ...) + b * f1(x1, x2, ...) + ...).
- SvdMultiDimensionLinearFitter() - Constructor for class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
-
Constructor.
- SvdMultiDimensionLinearFitter(Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
-
Constructor.
- SvdMultiDimensionLinearFitter(Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
-
Constructor.
- SvdMultiDimensionLinearFitter(LinearFitterMultiDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
-
Constructor.
- SvdMultiDimensionLinearFitter(LinearFitterMultiDimensionFunctionEvaluator, Matrix, double[], double) - Constructor for class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
-
Constructor.
- SvdMultiDimensionLinearFitter(LinearFitterMultiDimensionFunctionEvaluator, Matrix, double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
-
Constructor.
- SvdSingleDimensionLinearFitter - Class in com.irurueta.numerical.fitting
-
Fits provided data (x,y) to a function made of a linear combination of functions used as a basis (i.e. f(x) = a * f0(x) + b * f1(x) + ...).
- SvdSingleDimensionLinearFitter() - Constructor for class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
-
Constructor.
- SvdSingleDimensionLinearFitter(double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
-
Constructor.
- SvdSingleDimensionLinearFitter(double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
-
Constructor.
- SvdSingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator) - Constructor for class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
-
Constructor.
- SvdSingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator, double[], double[], double) - Constructor for class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
-
Constructor.
- SvdSingleDimensionLinearFitter(LinearFitterSingleDimensionFunctionEvaluator, double[], double[], double[]) - Constructor for class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
-
Constructor.
- swap(double[], double[]) - Method in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Internal method to swap two values.
- swap(double[], double[]) - Static method in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Swaps a and b values.
- swap(double[], double[]) - Method in class com.irurueta.numerical.roots.BracketedSingleRootEstimator
-
Internal method to swap two values.
- swap(double[], double[], int, int) - Static method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Swaps values of arrays at provided positions.
- swap(double[], double[], int, int) - Static method in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Swaps values of arrays at provided positions.
- swap(double[], double[], int, int) - Static method in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Swaps values of arrays at provided positions.
- swap(double[], double[], int, int) - Static method in class com.irurueta.numerical.fitting.SimpleSingleDimensionLinearFitter
-
Swaps values of arrays at provided positions.
- SymmetricDerivativeEstimator - Class in com.irurueta.numerical
-
Class to estimate the derivative of a single dimension function at a given point.
- SymmetricDerivativeEstimator(SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.SymmetricDerivativeEstimator
-
Constructor.
- SymmetricGradientEstimator - Class in com.irurueta.numerical
-
Class to estimate the gradient of a multidimensional function.
- SymmetricGradientEstimator(MultiDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.SymmetricGradientEstimator
-
Constructor.
T
- temp1 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Temporary matrix 1.
- temp2 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Temporary matrix 2.
- temp3 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Temporary matrix 3.
- temp4 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Temporary matrix 4.
- temp5 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Temporary matrix 5.
- temp6 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Temporary matrix 6.
- temp7 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Temporary matrix 7.
- temp8 - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
Temporary matrix 8.
- ThinPlateRadialBasisFunction - Class in com.irurueta.numerical.interpolation
-
Thin-plate spline Radial Basis Function implementation.
- ThinPlateRadialBasisFunction() - Constructor for class com.irurueta.numerical.interpolation.ThinPlateRadialBasisFunction
-
Constructor.
- ThinPlateRadialBasisFunction(double) - Constructor for class com.irurueta.numerical.interpolation.ThinPlateRadialBasisFunction
-
Constructor.
- THIRD - Static variable in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Constant defining one third.
- ThirdDegreePolynomialRootsEstimator - Class in com.irurueta.numerical.roots
-
Class to estimate the roots of a third degree polynomial along with other polynomial properties.
- ThirdDegreePolynomialRootsEstimator() - Constructor for class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Empty constructor.
- ThirdDegreePolynomialRootsEstimator(double[]) - Constructor for class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Constructor.
- threshold - Variable in class com.irurueta.numerical.polynomials.estimators.MSACPolynomialRobustEstimator
-
Threshold to determine whether polynomial evaluations are inliers or not when testing possible estimation solutions
- threshold - Variable in class com.irurueta.numerical.polynomials.estimators.PROSACPolynomialRobustEstimator
-
Threshold to determine whether polynomial evaluations are inlers or not when testing possible estimation solutions
- threshold - Variable in class com.irurueta.numerical.polynomials.estimators.RANSACPolynomialRobustEstimator
-
Threshold to determine whether polynomial evaluations are inliers or not when testing possible estimation solutions
- TIMESTAMP_FORMAT - Static variable in class com.irurueta.numerical.BuildInfo
-
Format for build timestamp.
- TINY - Static variable in class com.irurueta.numerical.interpolation.RationalInterpolator
-
A small number.
- TINY - Static variable in class com.irurueta.numerical.optimization.BracketedSingleOptimizer
-
Small value representing machine precision.
- TINY - Static variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
A small number.
- TINY - Static variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Small value considered to be machine precision.
- tmp - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Internal matrix reused for efficiency while provided input matrices keep the same size.
- tmpA - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Temporary value storing evaluation at lower bound.
- tmpA - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Temporary value storing evaluation at point "a".
- tmpB - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Temporary value storing evaluation at upper bound.
- tmpB - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Temporary value storing evaluation at point "b".
- tmpMid - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Temporary value storing evaluation at mid-point.
- tmpMid - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Temporary value storing evaluation at mid-point.
- tmpX - Variable in class com.irurueta.numerical.integration.DoubleExponentialRuleMatrixQuadrature
-
Temporary value storing evaluation at point x.
- tmpX - Variable in class com.irurueta.numerical.integration.MidPointMatrixQuadrature
-
Temporary value storing evaluation at point x.
- tmpX - Variable in class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Temporary value storing evaluation at point x.
- tol - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
Tolerance to reach convergence.
- tol - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Tolerance to reach convergence.
- tol - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtSingleDimensionFitter
-
Tolerance to reach convergence.
- tol - Variable in class com.irurueta.numerical.fitting.SvdMultiDimensionLinearFitter
-
Tolerance to define convergence threshold for SVD.
- tol - Variable in class com.irurueta.numerical.fitting.SvdSingleDimensionLinearFitter
-
Tolerance to define convergence threshold for SVD.
- tolerance - Variable in class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Tolerance value.
- tolerance - Variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
The fractional tolerance in the function value such that failure to decrease by more than this amount on one iteration signals done-ness.
- tolerance - Variable in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Tolerance.
- tolerance - Variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
The fractional tolerance in the function value such that failure to decrease by more than this amount on one iteration signals done-ness.
- tolerance - Variable in class com.irurueta.numerical.optimization.GoldenSingleOptimizer
-
Tolerance value.
- tolerance - Variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
The fractional tolerance in the function value such that failure to decrease by more than this amount on one iteration signals doneness.
- tolerance - Variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
The fractional tolerance in the function value such that failure to decrease by more than this amount on one iteration signals done-ness.
- tolerance - Variable in class com.irurueta.numerical.roots.BisectionSingleRootEstimator
-
Tolerance to find a root.
- tolerance - Variable in class com.irurueta.numerical.roots.BrentSingleRootEstimator
-
Tolerance value.
- tolerance - Variable in class com.irurueta.numerical.roots.FalsePositionSingleRootEstimator
-
Tolerance to find a root.
- tolerance - Variable in class com.irurueta.numerical.roots.NewtonRaphsonSingleRootEstimator
-
Tolerance value.
- tolerance - Variable in class com.irurueta.numerical.roots.RidderSingleRootEstimator
-
Tolerance value.
- tolerance - Variable in class com.irurueta.numerical.roots.SafeNewtonRaphsonSingleRootEstimator
-
Tolerance value.
- tolerance - Variable in class com.irurueta.numerical.roots.SecantSingleRootEstimator
-
Tolerance value.
- TOLERANCE - Static variable in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Default error tolerance of estimated result element-wise.
- TOLX - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
-
Convergence criterion on x values.
- TOLX2 - Static variable in class com.irurueta.numerical.optimization.QuasiNewtonMultiOptimizer
- transformIndices(int[], int[], int[]) - Static method in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Transforms indices picked by the subset selector into the indices where samples are actually localed by taking into account their original position before sorting quality scores.
- transformIndices(int[], int[], int[]) - Static method in class com.irurueta.numerical.robust.PROSACRobustEstimator
-
Transforms indices picked by the subset selector into the indices where samples are actually localed by taking into account their original position before sorting quality scores.
- transitionMatrix - Variable in class com.irurueta.numerical.signal.processing.KalmanFilter
-
State transition matrix (A).
- transposedSampleMatrix - Variable in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
The transposed sample matrix.
- TRAPEZOIDAL - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
-
Trapezoidal quadrature.
- TrapezoidalMatrixQuadrature - Class in com.irurueta.numerical.integration
-
Implementation of matrix quadrature using trapezoidal algorithm.
- TrapezoidalMatrixQuadrature(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.TrapezoidalMatrixQuadrature
-
Constructor.
- TrapezoidalQuadrature - Class in com.irurueta.numerical.integration
-
Implementation of quadrature using trapezoidal algorithm.
- TrapezoidalQuadrature(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.TrapezoidalQuadrature
-
Constructor.
- TrapezoidalQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using Trapezoidal quadrature up to desired accuracy.
- TrapezoidalQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.TrapezoidalQuadratureIntegrator
-
Constructor with default accuracy.
- TrapezoidalQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.TrapezoidalQuadratureIntegrator
-
Constructor.
- TrapezoidalQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes single dimension matrix (multivariate) function integration by using Trapezoidal quadrature up to desired accuracy.
- TrapezoidalQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.TrapezoidalQuadratureMatrixIntegrator
-
Constructor with default accuracy.
- TrapezoidalQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.TrapezoidalQuadratureMatrixIntegrator
-
Constructor.
- trim() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Trims this polynomial to remove all terms above degree that can be neglected.
- trim(Polynomial) - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Trims polynomial to remove all terms above degree that can be neglected.
- trimAndReturnNew() - Method in class com.irurueta.numerical.polynomials.Polynomial
-
Trims this polynomial to remove all terms above degree that can be neglected and returns the result as a new polynomial.
U
- update(double[]) - Method in class com.irurueta.numerical.signal.processing.MeasurementNoiseCovarianceEstimator
-
Updates currently estimated covariance matrix by adding provided sample data.
- update(double, double, boolean, double[], int, double, double, boolean) - Method in class com.irurueta.numerical.robust.PROMedSRobustEstimator.PROMedSInliersData
-
Updates data contained in this instance.
- update(double, double, BitSet, double[], int, double, boolean) - Method in class com.irurueta.numerical.robust.LMedSRobustEstimator.LMedSInliersData
-
Updates data contained in this instance.
- update(double, BitSet, double[], int, boolean) - Method in class com.irurueta.numerical.robust.MSACRobustEstimator.MSACInliersData
-
Updates data contained in this instance.
- update(BitSet, double[], int) - Method in class com.irurueta.numerical.robust.PROSACRobustEstimator.PROSACInliersData
-
Updates data contained in this instance.
- update(BitSet, double[], int) - Method in class com.irurueta.numerical.robust.RANSACRobustEstimator.RANSACInliersData
-
Updates data contained in this instance.
- UPPER_SQUARE_ROOT_MID_POINT - Enum constant in enum class com.irurueta.numerical.integration.QuadratureType
-
Upper square root mid-point.
- UpperSquareRootMidPointMatrixQuadrature - Class in com.irurueta.numerical.integration
-
This is an exact replacement for MidPointMatrixQuadrature, except that it allows for an inverse square-root singularity in the integrand at the upper limit b.
- UpperSquareRootMidPointMatrixQuadrature(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.UpperSquareRootMidPointMatrixQuadrature
-
Constructor.
- UpperSquareRootMidPointQuadrature - Class in com.irurueta.numerical.integration
-
This is an exact replacement for MidPointQuadrature, except that it allows for an inverse square-root singularity in the integrand at the upper limit b.
- UpperSquareRootMidPointQuadrature(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadrature
-
Constructor.
- UpperSquareRootMidPointQuadratureIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using an Upper Square Root mid-point quadrature when upper integration bound lies at a function singularity.
- UpperSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadratureIntegrator
-
Constructor.
- UpperSquareRootMidPointQuadratureIntegrator(double, double, SingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadratureIntegrator
-
Constructor.
- UpperSquareRootMidPointQuadratureMatrixIntegrator - Class in com.irurueta.numerical.integration
-
Computes function integration by using an Upper Square Root mid-point quadrature when upper integration bound lies at a function singularity.
- UpperSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener) - Constructor for class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadratureMatrixIntegrator
-
Constructor.
- UpperSquareRootMidPointQuadratureMatrixIntegrator(double, double, MatrixSingleDimensionFunctionEvaluatorListener, double) - Constructor for class com.irurueta.numerical.integration.UpperSquareRootMidPointQuadratureMatrixIntegrator
-
Constructor.
- useGeometricDistance - Variable in class com.irurueta.numerical.polynomials.estimators.PolynomialRobustEstimator
-
Indicates whether geometric distance will be used to find outliers or algebraic distance will be used instead.
- useHistogramInitialSolution - Variable in class com.irurueta.numerical.AccurateMaximumLikelihoodEstimator
-
Boolean that indicates that an initial coarse solution will be computed first by using an internal HistogramMaximumLikelihoodEstimator in order to initialize the internal BrentSingleOptimizer to obtain a more accurate solution.
- useInlierThresholds - Variable in class com.irurueta.numerical.robust.PROMedSRobustEstimator
-
Flag indicating whether thresholds to determine inliers are used, or if only median of residuals is used.
- usePolakRibiere - Variable in class com.irurueta.numerical.optimization.ConjugateGradientMultiOptimizer
-
Boolean indicating whether Polak-Ribiere method is used if true, otherwise Fletcher-Reeves will be used.
- usePolakRibiere - Variable in class com.irurueta.numerical.optimization.DerivativeConjugateGradientMultiOptimizer
-
Boolean indicating whether Polak-Ribiere method is used if true, otherwise Fletcher-Reeves will be used.
V
- VALID_POLY_PARAMS_LENGTH - Static variable in class com.irurueta.numerical.roots.FirstDegreePolynomialRootsEstimator
-
Number of parameters valid for a first degree polynomial.
- VALID_POLY_PARAMS_LENGTH - Static variable in class com.irurueta.numerical.roots.SecondDegreePolynomialRootsEstimator
-
Number of parameters valid for a second degree polynomial.
- VALID_POLY_PARAMS_LENGTH - Static variable in class com.irurueta.numerical.roots.ThirdDegreePolynomialRootsEstimator
-
Number of parameters valid for a third degree polynomial.
- vals - Variable in class com.irurueta.numerical.interpolation.ShepardInterpolator
-
Values of function at provided points.
- valueOf(String) - Static method in enum class com.irurueta.numerical.integration.IntegratorType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class com.irurueta.numerical.integration.QuadratureType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class com.irurueta.numerical.MaximumLikelihoodEstimatorMethod
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class com.irurueta.numerical.robust.SubsetSelectorType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
-
Returns the enum constant of this class with the specified name.
- values() - Static method in enum class com.irurueta.numerical.integration.IntegratorType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class com.irurueta.numerical.integration.QuadratureType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class com.irurueta.numerical.MaximumLikelihoodEstimatorMethod
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluationType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class com.irurueta.numerical.robust.RobustEstimatorMethod
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class com.irurueta.numerical.robust.SubsetSelectorType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
-
Returns an array containing the constants of this enum class, in the order they are declared.
- Variogram(Matrix, double[]) - Constructor for class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
-
Constructor using default beta = 1.5 and zero offset.
- Variogram(Matrix, double[], double) - Constructor for class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
-
Constructor using default zero offset.
- Variogram(Matrix, double[], double, double) - Constructor for class com.irurueta.numerical.interpolation.KrigingInterpolator.Variogram
-
Constructor.
- version - Variable in class com.irurueta.numerical.BuildInfo
-
Version of this library.
- VERSION_KEY - Static variable in class com.irurueta.numerical.BuildInfo
-
Key to obtain version of this library from properties file.
- vgram - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Variogram of provided data.
- vi - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
LU decomposer.
- vstar - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
W
- w - Variable in class com.irurueta.numerical.interpolation.BarycentricRationalInterpolator
-
Weights for barycentric rational interpolation.
- w - Variable in class com.irurueta.numerical.interpolation.RadialBasisFunctionInterpolator
-
Computed weights to compute interpolation from provided points.
- WEIGHTED_POLYNOMIAL_ESTIMATOR - Enum constant in enum class com.irurueta.numerical.polynomials.estimators.PolynomialEstimatorType
-
Polynomial estimator using weighted evaluations.
- WeightedPolynomialEstimator - Class in com.irurueta.numerical.polynomials.estimators
-
This class implements a polynomial estimator using weighted evaluations.
- WeightedPolynomialEstimator() - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Constructor.
- WeightedPolynomialEstimator(int) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Constructor.
- WeightedPolynomialEstimator(int, PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Constructor.
- WeightedPolynomialEstimator(int, List<PolynomialEvaluation>, double[]) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Constructor.
- WeightedPolynomialEstimator(int, List<PolynomialEvaluation>, double[], PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Constructor.
- WeightedPolynomialEstimator(PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Constructor.
- WeightedPolynomialEstimator(List<PolynomialEvaluation>, double[]) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Constructor.
- WeightedPolynomialEstimator(List<PolynomialEvaluation>, double[], PolynomialEstimatorListener) - Constructor for class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Constructor.
- weights - Variable in class com.irurueta.numerical.polynomials.estimators.WeightedPolynomialEstimator
-
Array containing weights for all evaluations.
- WeightSelection - Class in com.irurueta.numerical.robust
-
Class containing the selection that was made on a weighted algorithm.
- WeightSelection() - Constructor for class com.irurueta.numerical.robust.WeightSelection
-
Constructor.
X
- x - Variable in class com.irurueta.numerical.ExponentialMatrixEstimator
-
Internal matrix reused for efficiency while provided input matrices keep the same size.
- x - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Input points x where a multidimensional function f(x1, x2, ...) is evaluated where each column of the matrix represents each dimension of the point and each row is related to each sample corresponding to provided y pairs of values
- x - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Input points x where a multidimensional function f(x1, x2, ...) is evaluated where each column of the matrix represents each dimension of the point and each row is related to each sample corresponding to provided y pairs of values.
- x - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Input points x where function f(x) is evaluated.
- x - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
-
Array containing x coordinates of input data to be fitted to a straight line.
- x - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Data to compute interpolations from.
- x - Variable in class com.irurueta.numerical.PadeApproximantEstimator
-
Contains intermediate solution for denominator coefficients.
- x - Variable in class com.irurueta.numerical.polynomials.estimators.DerivativePolynomialEvaluation
-
Point where derivative of a given order has been evaluated.
- x - Variable in class com.irurueta.numerical.polynomials.estimators.DirectPolynomialEvaluation
-
Point where polynomial has been evaluated.
- x - Variable in class com.irurueta.numerical.polynomials.estimators.IntegralPolynomialEvaluation
-
Point where integral of a given order has been evaluated.
- x1 - Variable in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
-
Array of x1v.
- x1terp - Variable in class com.irurueta.numerical.interpolation.BilinearInterpolator
-
One dimensional interpolator for x1v.
- x1terp - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
One dimensional interpolator for x1v.
- x2terp - Variable in class com.irurueta.numerical.interpolation.BilinearInterpolator
-
One dimensional interpolator for x2v.
- x2terp - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
One dimensional interpolator for x2v.
- xh - Variable in class com.irurueta.numerical.GradientEstimator
-
Internal array to hold input parameter's values.
- xh - Variable in class com.irurueta.numerical.JacobianEstimator
-
Internal array to hold input parameter's values.
- xh1 - Variable in class com.irurueta.numerical.SymmetricGradientEstimator
-
Internal array containing one point to sample close to the original one.
- xh2 - Variable in class com.irurueta.numerical.SymmetricGradientEstimator
-
Internal array containing one point to sample close to the original one.
- xi - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
-
Values of i-th point.
- xi - Variable in class com.irurueta.numerical.optimization.DerivativeLineMultiOptimizer
-
Direction to make the search.
- xi - Variable in class com.irurueta.numerical.optimization.LineMultiOptimizer
-
Direction to make the search.
- ximat - Variable in class com.irurueta.numerical.optimization.PowellMultiOptimizer
-
Set of directions.
- xmin - Variable in class com.irurueta.numerical.optimization.MultiOptimizer
-
Minimum that was estimated.
- xmin - Variable in class com.irurueta.numerical.optimization.SingleOptimizer
-
Value where minimum has been found.
- xRow - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter
-
An input point to be evaluated.
- xRow - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
An input point to be evaluated.
- xx - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
-
X values to be used for interpolation estimation.
Y
- y - Variable in class com.irurueta.numerical.fitting.MultiDimensionFitter
-
Result of evaluation of multidimensional function f(x1, x2, ...)
- y - Variable in class com.irurueta.numerical.fitting.MultiVariateFitter
-
Result of evaluation of multi variate function f(x1, x2, ...) at provided x points.
- y - Variable in class com.irurueta.numerical.fitting.SingleDimensionFitter
-
Result of evaluation of linear single dimensional function f(x) at provided x points.
- y - Variable in class com.irurueta.numerical.fitting.StraightLineFitter
-
Array containing y coordinates of input data to be fitted to a straight line.
- y - Variable in class com.irurueta.numerical.interpolation.BilinearInterpolator
-
Matrix of tabulated function values yij.
- y - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Matrix of tabulated function values yij.
- y - Variable in class com.irurueta.numerical.optimization.SimplexMultiOptimizer
-
Function values at the vertices of the simples.
- y - Variable in class com.irurueta.numerical.PadeApproximantEstimator
-
Contains intermediate solution for numerator coefficients.
- y2 - Variable in class com.irurueta.numerical.interpolation.CubicSplineInterpolator
- ymod - Variable in class com.irurueta.numerical.fitting.LevenbergMarquardtMultiVariateFitter
-
Results of function evaluations.
- YP1 - Static variable in class com.irurueta.numerical.interpolation.CubicSplineInterpolator
- YPN - Static variable in class com.irurueta.numerical.interpolation.CubicSplineInterpolator
- yv - Variable in class com.irurueta.numerical.interpolation.BicubicSpline2DInterpolator
-
Array of x2v.
- yv - Variable in class com.irurueta.numerical.interpolation.Polynomial2DInterpolator
-
Temporary array containing interpolated values in one direction.
- yvi - Variable in class com.irurueta.numerical.interpolation.KrigingInterpolator
- yy - Variable in class com.irurueta.numerical.interpolation.BaseInterpolator
-
Y values to be used for interpolation estimation.
Z
- ZEPS - Static variable in class com.irurueta.numerical.optimization.BrentSingleOptimizer
-
Small number that protects against trying to achieve fractional accuracy for a minimum that happens to be exactly zero.
- ZEPS - Static variable in class com.irurueta.numerical.optimization.DerivativeBrentSingleOptimizer
-
Constant defining machine precision.
- ZERO_EDGE - Enum constant in enum class com.irurueta.numerical.signal.processing.ConvolverEdgeMethod
-
When convolution kernel reaches edge of signal being convoluted, it is assumed that the signal value is zero.
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form