Class IntegralIntervalPolynomialEvaluation
java.lang.Object
com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
com.irurueta.numerical.polynomials.estimators.IntegralIntervalPolynomialEvaluation
- All Implemented Interfaces:
Serializable
Contains an evaluation of an interval of the nth-integral of a polynomial.
- See Also:
-
Field Summary
FieldsModifier and TypeFieldDescriptionprivate double[]Constant terms of integral.private doubleEnd point of interval being integrated.private intOrder of integral.static final intMinimum allowed integral order.private doubleStart point of interval being integrated. -
Constructor Summary
ConstructorsConstructorDescriptionConstructor.IntegralIntervalPolynomialEvaluation(double startX, double endX, double evaluation) Constructor.IntegralIntervalPolynomialEvaluation(double startX, double endX, double evaluation, int integralOrder) Constructor. -
Method Summary
Modifier and TypeMethodDescriptiondouble[]Gets constant terms of integral.doublegetEndX()Gets end point of interval being integrated.intGets integral order.doubleGets start point of interval being integrated.getType()Gets type of polynomial evaluation.voidsetConstants(double[] constants) Sets constant terms of integral.voidsetEndX(double endX) Sets end point of interval being integrated.final voidsetIntegralOrder(int integralOrder) Sets integral order.voidsetStartX(double startX) Sets start point of interval being integrated.Methods inherited from class com.irurueta.numerical.polynomials.estimators.PolynomialEvaluation
getEvaluation, setEvaluation
-
Field Details
-
MIN_INTEGRAL_ORDER
public static final int MIN_INTEGRAL_ORDERMinimum allowed integral order.- See Also:
-
startX
private double startXStart point of interval being integrated. -
endX
private double endXEnd point of interval being integrated. -
integralOrder
private int integralOrderOrder of integral. -
constants
private double[] constantsConstant terms of integral.
-
-
Constructor Details
-
IntegralIntervalPolynomialEvaluation
public IntegralIntervalPolynomialEvaluation()Constructor. -
IntegralIntervalPolynomialEvaluation
public IntegralIntervalPolynomialEvaluation(double startX, double endX, double evaluation, int integralOrder) Constructor.- Parameters:
startX- start point of interval being integrated.endX- end point of interval being integrated.evaluation- evaluation of nth-integral of polynomial between startX and endX.integralOrder- order of integral.- Throws:
IllegalArgumentException- if order of integral is less than 1.
-
IntegralIntervalPolynomialEvaluation
public IntegralIntervalPolynomialEvaluation(double startX, double endX, double evaluation) Constructor.- Parameters:
startX- start point of interval being integrated.endX- end point of interval being integrated.evaluation- evaluation of nth-integral of polynomial between startX and endX.
-
-
Method Details
-
getStartX
public double getStartX()Gets start point of interval being integrated.- Returns:
- start point of interval being integrated.
-
setStartX
public void setStartX(double startX) Sets start point of interval being integrated.- Parameters:
startX- start point of interval being integrated.
-
getEndX
public double getEndX()Gets end point of interval being integrated.- Returns:
- end point of interval being integrated.
-
setEndX
public void setEndX(double endX) Sets end point of interval being integrated.- Parameters:
endX- end point of interval being integrated.
-
getIntegralOrder
public int getIntegralOrder()Gets integral order.- Returns:
- integral order.
-
setIntegralOrder
public final void setIntegralOrder(int integralOrder) Sets integral order.- Parameters:
integralOrder- integral order.- Throws:
IllegalArgumentException- if integral order is less than 1.
-
getConstants
public double[] getConstants()Gets constant terms of integral.- Returns:
- constant terms of integral.
-
setConstants
public void setConstants(double[] constants) Sets constant terms of integral.- Parameters:
constants- constant terms of integral.
-
getType
Gets type of polynomial evaluation.- Specified by:
getTypein classPolynomialEvaluation- Returns:
- type of polynomial evaluation.
-