1 /*
2 * Copyright (C) 2023 Alberto Irurueta Carro (alberto@irurueta.com)
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 package com.irurueta.numerical.integration;
17
18 import com.irurueta.numerical.SingleDimensionFunctionEvaluatorListener;
19
20 /**
21 * Computes function integration by using Romberg's method and double exponential quadrature.
22 * Double exponential quadrature allows improper integrands containing singularities to be
23 * integrated.
24 *
25 * @see DoubleExponentialRuleQuadrature
26 */
27 public class RombergDoubleExponentialRuleQuadratureIntegrator
28 extends RombergIntegrator<DoubleExponentialRuleQuadrature> {
29
30 /**
31 * Constructor.
32 *
33 * @param a Lower limit of integration.
34 * @param b Upper limit of integration.
35 * @param hmax Maximum step size. This quadrature transforms the range of integration to
36 * [-hmax, hmax].
37 * @param listener listener to evaluate a single dimension function at required points.
38 * @param eps required accuracy.
39 */
40 public RombergDoubleExponentialRuleQuadratureIntegrator(
41 final double a, final double b, final double hmax, final SingleDimensionFunctionEvaluatorListener listener,
42 final double eps) {
43 super(new DoubleExponentialRuleQuadrature(listener, a, b, hmax), eps);
44 }
45
46 /**
47 * Constructor.
48 *
49 * @param a Lower limit of integration.
50 * @param b Upper limit of integration.
51 * @param listener listener to evaluate a single dimension function at required points.
52 * @param eps required accuracy.
53 */
54 public RombergDoubleExponentialRuleQuadratureIntegrator(
55 final double a, final double b, final SingleDimensionFunctionEvaluatorListener listener, final double eps) {
56 super(new DoubleExponentialRuleQuadrature(listener, a, b), eps);
57 }
58
59 /**
60 * Constructor with default accuracy.
61 *
62 * @param a Lower limit of integration.
63 * @param b Upper limit of integration.
64 * @param hmax Maximum step size. This quadrature transforms the range of integration to
65 * [-hmax, hmax].
66 * @param listener listener to evaluate a single dimension function at required points.
67 */
68 public RombergDoubleExponentialRuleQuadratureIntegrator(
69 final double a, final double b, final double hmax,
70 final SingleDimensionFunctionEvaluatorListener listener) {
71 this(a, b, hmax, listener, EPS);
72 }
73
74 /**
75 * Constructor with default accuracy and default maximum step size.
76 *
77 * @param a Lower limit of integration.
78 * @param b Upper limit of integration.
79 * @param listener listener to evaluate a single dimension function at required points.
80 */
81 public RombergDoubleExponentialRuleQuadratureIntegrator(
82 final double a, final double b, final SingleDimensionFunctionEvaluatorListener listener) {
83 this(a, b, listener, EPS);
84 }
85
86 /**
87 * Constructor.
88 *
89 * @param a Lower limit of integration.
90 * @param b Upper limit of integration.
91 * @param hmax Maximum step size. This quadrature transforms the range of integration to
92 * [-hmax, hmax].
93 * @param listener listener to evaluate a single dimension function at required points for
94 * double exponential quadrature to take into account any non-mild
95 * singularities.
96 * @param eps required accuracy.
97 */
98 public RombergDoubleExponentialRuleQuadratureIntegrator(
99 final double a, final double b, final double hmax,
100 final DoubleExponentialSingleDimensionFunctionEvaluatorListener listener, final double eps) {
101 super(new DoubleExponentialRuleQuadrature(listener, a, b, hmax), eps);
102 }
103
104 /**
105 * Constructor with default maximum step size.
106 *
107 * @param a Lower limit of integration.
108 * @param b Upper limit of integration.
109 * @param listener listener to evaluate a single dimension function at required points for
110 * double exponential quadrature to take into account any non-mild
111 * singularities.
112 * @param eps required accuracy.
113 */
114 public RombergDoubleExponentialRuleQuadratureIntegrator(
115 final double a, final double b, final DoubleExponentialSingleDimensionFunctionEvaluatorListener listener,
116 final double eps) {
117 super(new DoubleExponentialRuleQuadrature(listener, a, b), eps);
118 }
119
120 /**
121 * Constructor with default accuracy.
122 *
123 * @param a Lower limit of integration.
124 * @param b Upper limit of integration.
125 * @param hmax Maximum step size. This quadrature transforms the range of integration to
126 * [-hmax, hmax].
127 * @param listener listener to evaluate a single dimension function at required points for
128 * double exponential quadrature to take into account any non-mild
129 * singularities.
130 */
131 public RombergDoubleExponentialRuleQuadratureIntegrator(
132 final double a, final double b, final double hmax,
133 final DoubleExponentialSingleDimensionFunctionEvaluatorListener listener) {
134 this(a, b, hmax, listener, EPS);
135 }
136
137 /**
138 * Constructor with default accuracy and default maximum step size.
139 *
140 * @param a Lower limit of integration.
141 * @param b Upper limit of integration.
142 * @param listener listener to evaluate a single dimension function at required points for
143 * double exponential quadrature to take into account any non-mild
144 * singularities.
145 */
146 public RombergDoubleExponentialRuleQuadratureIntegrator(
147 final double a, final double b, final DoubleExponentialSingleDimensionFunctionEvaluatorListener listener) {
148 this(a, b, listener, EPS);
149 }
150
151 /**
152 * Gets type of quadrature.
153 *
154 * @return type of quadrature.
155 */
156 @Override
157 public QuadratureType getQuadratureType() {
158 return QuadratureType.DOUBLE_EXPONENTIAL_RULE;
159 }
160 }