View Javadoc
1   /*
2    * Copyright (C) 2023 Alberto Irurueta Carro (alberto@irurueta.com)
3    *
4    * Licensed under the Apache License, Version 2.0 (the "License");
5    * you may not use this file except in compliance with the License.
6    * You may obtain a copy of the License at
7    *
8    *         http://www.apache.org/licenses/LICENSE-2.0
9    *
10   * Unless required by applicable law or agreed to in writing, software
11   * distributed under the License is distributed on an "AS IS" BASIS,
12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13   * See the License for the specific language governing permissions and
14   * limitations under the License.
15   */
16  package com.irurueta.numerical.integration;
17  
18  import com.irurueta.numerical.EvaluationException;
19  import com.irurueta.numerical.SingleDimensionFunctionEvaluatorListener;
20  
21  /**
22   * Implementation of quadrature using double exponential, which allows integration with a variable
23   * transformation.
24   * This implementation is suitable for improper integrands containing singularities.
25   */
26  public class DoubleExponentialRuleQuadrature extends Quadrature {
27  
28      /**
29       * Default transformation of range of integration.
30       */
31      public static final double DEFAULT_HMAX = 3.7;
32  
33      /**
34       * Lower limit of integration.
35       */
36      private final double a;
37  
38      /**
39       * Upper limit of integration.
40       */
41      private final double b;
42  
43      /**
44       * Maximum step size. Determines transformation of range of integration.
45       */
46      private final double hmax;
47  
48      /**
49       * Value of the next stage of refinement.
50       */
51      private double s;
52  
53      /**
54       * Listener to evaluate single dimension functions at required points.
55       */
56      private final DoubleExponentialSingleDimensionFunctionEvaluatorListener listener;
57  
58      /**
59       * Constructor.
60       *
61       * @param listener listener to evaluate function and handle singularities.
62       * @param a        Lower limit of integration.
63       * @param b        Upper limit of integration.
64       * @param hmax     Maximum step size. This quadrature transforms the range of integration to
65       *                 [-hmax, hmax].
66       */
67      public DoubleExponentialRuleQuadrature(
68              final DoubleExponentialSingleDimensionFunctionEvaluatorListener listener, final double a, final double b,
69              final double hmax) {
70          this.listener = listener;
71          this.a = a;
72          this.b = b;
73          this.hmax = hmax;
74          n = 0;
75      }
76  
77      /**
78       * Constructor with default maximum step size.
79       *
80       * @param listener listener to evaluate function and handle singularities.
81       * @param a        Lower limit of integration.
82       * @param b        Upper limit of integration.
83       */
84      public DoubleExponentialRuleQuadrature(
85              final DoubleExponentialSingleDimensionFunctionEvaluatorListener listener, final double a, final double b) {
86          this(listener, a, b, DEFAULT_HMAX);
87      }
88  
89      /**
90       * Constructor.
91       *
92       * @param listener listener to evaluate function if function has mild singularities.
93       * @param a        Lower limit of integration.
94       * @param b        Upper limit of integration.
95       * @param hmax     Maximum step size. This quadrature transforms the range of integration to
96       *                 [-hmax, hmax].
97       */
98      public DoubleExponentialRuleQuadrature(
99              final SingleDimensionFunctionEvaluatorListener listener, final double a, final double b,
100             final double hmax) {
101         this((x, delta) -> listener.evaluate(x), a, b, hmax);
102     }
103 
104     /**
105      * Constructor with default maximum step size.
106      *
107      * @param listener listener to evaluate function if function has mild singularities.
108      * @param a        Lower limit of integration.
109      * @param b        Upper limit of integration.
110      */
111     public DoubleExponentialRuleQuadrature(
112             final SingleDimensionFunctionEvaluatorListener listener, final double a, final double b) {
113         this(listener, a, b, DEFAULT_HMAX);
114     }
115 
116     /**
117      * Returns the value of the integral at the nth stage of refinement.
118      *
119      * @return the value of the integral at the nth stage of refinement.
120      * @throws EvaluationException Raised if something failed during the evaluation.
121      */
122     @SuppressWarnings("Duplicates")
123     @Override
124     public double next() throws EvaluationException {
125         // On the first call to the function next (n = 1), the routine returns the crudest estimate
126         // of integral between a and b of f(x). Subsequent calls to next (n = 2, 3, ...) will
127         // improve the accuracy by adding 2^(n-1) additional interior points.
128         double del;
129         double fact;
130         double q;
131         double sum;
132         double t;
133         final double twoh;
134         int it;
135         int j;
136         n++;
137         if (n == 1) {
138             fact = 0.25;
139             s = hmax * 2.0 * (b - a) * fact * listener.evaluate(0.5 * (b + a), 0.5 * (b - a));
140         } else {
141             for (it = 1, j = 1; j < n - 1; j++) {
142                 it <<= 1;
143             }
144 
145             // Twice the spacing of the points to be added
146             twoh = hmax / it;
147             t = 0.5 * twoh;
148             for (sum = 0.0, j = 0; j < it; j++) {
149                 q = Math.exp(-2.0 * Math.sinh(t));
150                 del = (b - a) * q / (1.0 + q);
151                 final var value = 1.0 + q;
152                 fact = q / (value * value) * Math.cosh(t);
153                 sum += fact * (listener.evaluate(a + del, del) + listener.evaluate(b - del, del));
154                 t += twoh;
155             }
156 
157             // Replace s by its refined value and return.
158             s = 0.5 * s + (b - a) * twoh * sum;
159         }
160         return s;
161     }
162 
163     /**
164      * Gets type of quadrature.
165      *
166      * @return type of quadrature.
167      */
168     @Override
169     public QuadratureType getType() {
170         return QuadratureType.DOUBLE_EXPONENTIAL_RULE;
171     }
172 }