1 /*
2 * Copyright (C) 2023 Alberto Irurueta Carro (alberto@irurueta.com)
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 package com.irurueta.numerical.integration;
17
18 import com.irurueta.numerical.SingleDimensionFunctionEvaluatorListener;
19
20 /**
21 * Computes function integration by using double exponential quadrature.
22 * Double exponential quadrature allows improper integrands containing singularities to be
23 * integrated.
24 *
25 * @see DoubleExponentialRuleQuadrature
26 */
27 public class DoubleExponentialRuleQuadratureIntegrator
28 extends QuadratureIntegrator<DoubleExponentialRuleQuadrature> {
29
30 /**
31 * Constructor.
32 *
33 * @param a Lower limit of integration.
34 * @param b Upper limit of integration.
35 * @param hmax Maximum step size. This quadrature transforms the range of integration to
36 * [-hmax, hmax].
37 * @param listener listener to evaluate a single dimension function at required points.
38 * @param eps required accuracy.
39 */
40 public DoubleExponentialRuleQuadratureIntegrator(
41 final double a, final double b, final double hmax, final SingleDimensionFunctionEvaluatorListener listener,
42 final double eps) {
43 super(new DoubleExponentialRuleQuadrature(listener, a, b, hmax), eps);
44 }
45
46 /**
47 * Constructor.
48 *
49 * @param a Lower limit of integration.
50 * @param b Upper limit of integration.
51 * @param listener listener to evaluate a single dimension function at required points.
52 * @param eps required accuracy.
53 */
54 public DoubleExponentialRuleQuadratureIntegrator(
55 final double a, final double b, final SingleDimensionFunctionEvaluatorListener listener, final double eps) {
56 super(new DoubleExponentialRuleQuadrature(listener, a, b), eps);
57 }
58
59 /**
60 * Constructor with default accuracy.
61 *
62 * @param a Lower limit of integration.
63 * @param b Upper limit of integration.
64 * @param hmax Maximum step size. This quadrature transforms the range of integration to
65 * [-hmax, hmax].
66 * @param listener listener to evaluate a single dimension function at required points.
67 */
68 public DoubleExponentialRuleQuadratureIntegrator(
69 final double a, final double b, final double hmax, final SingleDimensionFunctionEvaluatorListener listener) {
70 this(a, b, hmax, listener, EPS);
71 }
72
73 /**
74 * Constructor with default accuracy and default maximum step size.
75 *
76 * @param a Lower limit of integration.
77 * @param b Upper limit of integration.
78 * @param listener listener to evaluate a single dimension function at required points.
79 */
80 public DoubleExponentialRuleQuadratureIntegrator(
81 final double a, final double b, final SingleDimensionFunctionEvaluatorListener listener) {
82 this(a, b, listener, EPS);
83 }
84
85 /**
86 * Constructor.
87 *
88 * @param a Lower limit of integration.
89 * @param b Upper limit of integration.
90 * @param hmax Maximum step size. This quadrature transforms the range of integration to
91 * [-hmax, hmax].
92 * @param listener listener to evaluate a single dimension function at required points for
93 * double exponential quadrature to take into account any non-mild
94 * singularities.
95 * @param eps required accuracy.
96 */
97 public DoubleExponentialRuleQuadratureIntegrator(
98 final double a, final double b, final double hmax,
99 final DoubleExponentialSingleDimensionFunctionEvaluatorListener listener, final double eps) {
100 super(new DoubleExponentialRuleQuadrature(listener, a, b, hmax), eps);
101 }
102
103 /**
104 * Constructor with default maximum step size.
105 *
106 * @param a Lower limit of integration.
107 * @param b Upper limit of integration.
108 * @param listener listener to evaluate a single dimension function at required points for
109 * double exponential quadrature to take into account any non-mild
110 * singularities.
111 * @param eps required accuracy.
112 */
113 public DoubleExponentialRuleQuadratureIntegrator(
114 final double a, final double b, final DoubleExponentialSingleDimensionFunctionEvaluatorListener listener,
115 final double eps) {
116 super(new DoubleExponentialRuleQuadrature(listener, a, b), eps);
117 }
118
119 /**
120 * Constructor with default accuracy.
121 *
122 * @param a Lower limit of integration.
123 * @param b Upper limit of integration.
124 * @param hmax Maximum step size. This quadrature transforms the range of integration to
125 * [-hmax, hmax].
126 * @param listener listener to evaluate a single dimension function at required points for
127 * double exponential quadrature to take into account any non-mild
128 * singularities.
129 */
130 public DoubleExponentialRuleQuadratureIntegrator(
131 final double a, final double b, final double hmax,
132 final DoubleExponentialSingleDimensionFunctionEvaluatorListener listener) {
133 this(a, b, hmax, listener, EPS);
134 }
135
136 /**
137 * Constructor with default accuracy and default maximum step size.
138 *
139 * @param a Lower limit of integration.
140 * @param b Upper limit of integration.
141 * @param listener listener to evaluate a single dimension function at required points for
142 * double exponential quadrature to take into account any non-mild
143 * singularities.
144 */
145 public DoubleExponentialRuleQuadratureIntegrator(
146 final double a, final double b, final DoubleExponentialSingleDimensionFunctionEvaluatorListener listener) {
147 this(a, b, listener, EPS);
148 }
149
150 /**
151 * Gets type of quadrature.
152 *
153 * @return type of quadrature.
154 */
155 @Override
156 public QuadratureType getQuadratureType() {
157 return QuadratureType.DOUBLE_EXPONENTIAL_RULE;
158 }
159 }