Class RobustKnownHardIronMagneticFluxDensityNormMagnetometerCalibrator.PreliminaryResult

java.lang.Object
com.irurueta.navigation.inertial.calibration.magnetometer.RobustKnownHardIronMagneticFluxDensityNormMagnetometerCalibrator.PreliminaryResult
Enclosing class:
RobustKnownHardIronMagneticFluxDensityNormMagnetometerCalibrator

protected static class RobustKnownHardIronMagneticFluxDensityNormMagnetometerCalibrator.PreliminaryResult extends Object
Internal class containing estimated preliminary result.
  • Field Details

    • estimatedMm

      private com.irurueta.algebra.Matrix estimatedMm
      Estimated magnetometer soft-iron matrix containing scale factors and cross coupling errors. This is the product of matrix Tm containing cross coupling errors and Km containing scaling factors. So tat:
           Mm = [sx    mxy  mxz] = Tm*Km
                [myx   sy   myz]
                [mzx   mzy  sz ]
       
      Where:
           Km = [sx 0   0 ]
                [0  sy  0 ]
                [0  0   sz]
       
      and
           Tm = [1          -alphaXy    alphaXz ]
                [alphaYx    1           -alphaYz]
                [-alphaZx   alphaZy     1       ]
       
      Hence:
           Mm = [sx    mxy  mxz] = Tm*Km =  [sx             -sy * alphaXy   sz * alphaXz ]
                [myx   sy   myz]            [sx * alphaYx   sy              -sz * alphaYz]
                [mzx   mzy  sz ]            [-sx * alphaZx  sy * alphaZy    sz           ]
       
      This instance allows any 3x3 matrix however, typically alphaYx, alphaZx and alphaZy are considered to be zero if the accelerometer z-axis is assumed to be the same as the body z-axis. When this is assumed, myx = mzx = mzy = 0 and the Mm matrix becomes upper diagonal:
           Mm = [sx    mxy  mxz]
                [0     sy   myz]
                [0     0    sz ]
       
      Values of this matrix are unit-less.
    • covariance

      private com.irurueta.algebra.Matrix covariance
      Covariance matrix.
    • estimatedMse

      private double estimatedMse
      Estimated Mean Squared Error (MSE).
    • estimatedChiSq

      private double estimatedChiSq
      Estimated chi square value.
  • Constructor Details

    • PreliminaryResult

      protected PreliminaryResult()