Class RobustKnownFrameAccelerometerCalibrator.PreliminaryResult

java.lang.Object
com.irurueta.navigation.inertial.calibration.accelerometer.RobustKnownFrameAccelerometerCalibrator.PreliminaryResult
Enclosing class:
RobustKnownFrameAccelerometerCalibrator

protected static class RobustKnownFrameAccelerometerCalibrator.PreliminaryResult extends Object
Internal class containing estimated preliminary result.
  • Field Details

    • estimatedBiases

      private double[] estimatedBiases
      Estimated accelerometer biases for each IMU axis expressed in meter per squared second (m/s^2).
    • estimatedMa

      private com.irurueta.algebra.Matrix estimatedMa
      Estimated accelerometer scale factors and cross coupling errors. This is the product of matrix Ta containing cross coupling errors and Ka containing scaling factors. So tat:
           Ma = [sx    mxy  mxz] = Ta*Ka
                [myx   sy   myz]
                [mzx   mzy  sz ]
       
      Where:
           Ka = [sx 0   0 ]
                [0  sy  0 ]
                [0  0   sz]
       
      and
           Ta = [1          -alphaXy    alphaXz ]
                [alphaYx    1           -alphaYz]
                [-alphaZx   alphaZy     1       ]
       
      Hence:
           Ma = [sx    mxy  mxz] = Ta*Ka =  [sx             -sy * alphaXy   sz * alphaXz ]
                [myx   sy   myz]            [sx * alphaYx   sy              -sz * alphaYz]
                [mzx   mzy  sz ]            [-sx * alphaZx  sy * alphaZy    sz           ]
       
      This instance allows any 3x3 matrix however, typically alphaYx, alphaZx and alphaZy are considered to be zero if the accelerometer z-axis is assumed to be the same as the body z-axis. When this is assumed, myx = mzx = mzy = 0 and the Ma matrix becomes upper diagonal:
           Ma = [sx    mxy  mxz]
                [0     sy   myz]
                [0     0    sz ]
       
      Values of this matrix are unit-less.
    • covariance

      private com.irurueta.algebra.Matrix covariance
      Estimated covariance matrix.
    • estimatedMse

      private double estimatedMse
      Estimated MSE (Mean Square Error).
    • estimatedChiSq

      private double estimatedChiSq
      Estimated chi square value.
  • Constructor Details

    • PreliminaryResult

      protected PreliminaryResult()