Class PROMedSFundamentalMatrixRobustEstimator
java.lang.Object
com.irurueta.ar.epipolar.estimators.FundamentalMatrixRobustEstimator
com.irurueta.ar.epipolar.estimators.PROMedSFundamentalMatrixRobustEstimator
Finds the best fundamental matrix for provided collections of matched 2D
points using PROMedS algorithm.
-
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final FundamentalMatrixEstimatorMethod
Default non-robust method to estimate a fundamental matrix.static final double
Default value to be used for stop threshold.static final double
Minimum allowed stop threshold value.private double[]
Quality scores corresponding to each provided point.private double
Threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.Fields inherited from class com.irurueta.ar.epipolar.estimators.FundamentalMatrixRobustEstimator
confidence, DEFAULT_CONFIDENCE, DEFAULT_FUNDAMENTAL_MATRIX_ESTIMATOR_METHOD, DEFAULT_KEEP_COVARIANCE, DEFAULT_MAX_ITERATIONS, DEFAULT_PROGRESS_DELTA, DEFAULT_REFINE_RESULT, DEFAULT_ROBUST_METHOD, inliersData, leftPoints, listener, locked, MAX_CONFIDENCE, MAX_PROGRESS_DELTA, maxIterations, MIN_CONFIDENCE, MIN_ITERATIONS, MIN_PROGRESS_DELTA, progressDelta, refineResult, rightPoints
-
Constructor Summary
ConstructorsConstructorDescriptionConstructor.PROMedSFundamentalMatrixRobustEstimator
(double[] qualityScores) Constructor.PROMedSFundamentalMatrixRobustEstimator
(double[] qualityScores, FundamentalMatrixRobustEstimatorListener listener) Constructor.PROMedSFundamentalMatrixRobustEstimator
(double[] qualityScores, List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints) Constructor.PROMedSFundamentalMatrixRobustEstimator
(double[] qualityScores, List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints, FundamentalMatrixRobustEstimatorListener listener) Constructor.PROMedSFundamentalMatrixRobustEstimator
(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod) Constructor.PROMedSFundamentalMatrixRobustEstimator
(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, double[] qualityScores) Constructor.PROMedSFundamentalMatrixRobustEstimator
(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, double[] qualityScores, FundamentalMatrixRobustEstimatorListener listener) Constructor.PROMedSFundamentalMatrixRobustEstimator
(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, double[] qualityScores, List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints) Constructor.PROMedSFundamentalMatrixRobustEstimator
(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, double[] qualityScores, List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints, FundamentalMatrixRobustEstimatorListener listener) Constructor.PROMedSFundamentalMatrixRobustEstimator
(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, FundamentalMatrixRobustEstimatorListener listener) Constructor.PROMedSFundamentalMatrixRobustEstimator
(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints) Constructor.PROMedSFundamentalMatrixRobustEstimator
(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints, FundamentalMatrixRobustEstimatorListener listener) Constructor.Constructor.PROMedSFundamentalMatrixRobustEstimator
(List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints) Constructor.PROMedSFundamentalMatrixRobustEstimator
(List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints, FundamentalMatrixRobustEstimatorListener listener) Constructor. -
Method Summary
Modifier and TypeMethodDescriptionestimate()
Estimates a radial distortion using a robust estimator and the best set of matched 2D points found using the robust estimator.com.irurueta.numerical.robust.RobustEstimatorMethod
Returns method being used for robust estimation.double[]
Returns quality scores corresponding to each provided pair of points.protected double
Gets standard deviation used for Levenberg-Marquardt fitting during refinement.double
Returns threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.private void
internalSetQualityScores
(double[] qualityScores) Sets quality scores corresponding to each provided pair of matched points.boolean
isReady()
Returns value indicating whether required data has been provided so that fundamental matrix estimation can start.void
setPoints
(List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints) Sets matched 2D points on both left and right views.void
setQualityScores
(double[] qualityScores) Sets quality scores corresponding to each provided pair of points.void
setStopThreshold
(double stopThreshold) Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.Methods inherited from class com.irurueta.ar.epipolar.estimators.FundamentalMatrixRobustEstimator
attemptRefine, create, create, create, create, create, create, getConfidence, getCovariance, getInliersData, getLeftPoints, getListener, getMaxIterations, getMinRequiredPoints, getNonRobustFundamentalMatrixEstimatorMethod, getProgressDelta, getRightPoints, isCovarianceKept, isListenerAvailable, isLocked, isResultRefined, nonRobustEstimate, residual, setConfidence, setCovarianceKept, setListener, setMaxIterations, setNonRobustFundamentalMatrixEstimatorMethod, setProgressDelta, setResultRefined
-
Field Details
-
DEFAULT_PROMEDS_FUNDAMENTAL_MATRIX_ESTIMATOR_METHOD
public static final FundamentalMatrixEstimatorMethod DEFAULT_PROMEDS_FUNDAMENTAL_MATRIX_ESTIMATOR_METHODDefault non-robust method to estimate a fundamental matrix. -
DEFAULT_STOP_THRESHOLD
public static final double DEFAULT_STOP_THRESHOLDDefault value to be used for stop threshold. Stop threshold can be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough. Once a solution is found that generates a threshold below this value, the algorithm will stop. The stop threshold can be used to prevent the LMedS algorithm iterating too many times in cases where samples have a very similar accuracy. For instance, in cases where proportion of outliers is very small (close to 0%), and samples are very accurate (i.e. 1e-6), the algorithm would iterate for a long time trying to find the best solution when indeed there is no need to do that if a reasonable threshold has already been reached. Because of this behaviour the stop threshold can be set to a value much lower than the one typically used in RANSAC, and yet the algorithm could still produce even smaller thresholds in estimated results.- See Also:
-
MIN_STOP_THRESHOLD
public static final double MIN_STOP_THRESHOLDMinimum allowed stop threshold value.- See Also:
-
stopThreshold
private double stopThresholdThreshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough. Once a solution is found that generates a threshold below this value, the algorithm will stop. The stop threshold can be used to prevent the LMedS algorithm iterating too many times in cases where samples have a very similar accuracy. For instance, in cases where proportion of outliers is very small (close to 0%), and samples are very accurate (i.e. 1e-6), the algorithm would iterate for a long time trying to find the best solution when indeed there is no need to do that if a reasonable threshold has already been reached. Because of this behaviour the stop threshold can be set to a value much lower than the one typically used in RANSAC, and yet the algorithm could still produce even smaller thresholds in estimated results. -
qualityScores
private double[] qualityScoresQuality scores corresponding to each provided point. The larger the score value the better the quality of the sample.
-
-
Constructor Details
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod) Constructor.- Parameters:
fundMatrixEstimatorMethod
- method for non-robust fundamental matrix estimator.
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, FundamentalMatrixRobustEstimatorListener listener) Constructor.- Parameters:
fundMatrixEstimatorMethod
- method for non-robust fundamental matrix estimator.listener
- listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints) Constructor.- Parameters:
fundMatrixEstimatorMethod
- method for non-robust fundamental matrix estimator.leftPoints
- 2D points on left view.rightPoints
- 2D points on right view.- Throws:
IllegalArgumentException
- if provided list of points do not have the same length or their length is less than 8 points.
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints, FundamentalMatrixRobustEstimatorListener listener) Constructor.- Parameters:
fundMatrixEstimatorMethod
- method for non-robust fundamental matrix estimator.leftPoints
- 2D points on left view.rightPoints
- 2D points on right view.listener
- listener to be notified of events such as when estimation starts, ends or its progress significantly changes.- Throws:
IllegalArgumentException
- if provided list of points do not have the same length or their length is less than 8 points.
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, double[] qualityScores) Constructor.- Parameters:
fundMatrixEstimatorMethod
- method for non-robust fundamental matrix estimator.qualityScores
- quality scores corresponding to each provided pair of matched points.- Throws:
IllegalArgumentException
- if provided quality scores length is smaller than required size (i.e. 7 matched pair of points).
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, double[] qualityScores, FundamentalMatrixRobustEstimatorListener listener) Constructor.- Parameters:
fundMatrixEstimatorMethod
- method for non-robust fundamental matrix estimator.qualityScores
- quality scores corresponding to each provided pair of matched points.listener
- listener to be notified of events such as when estimation starts, ends or its progress significantly changes.- Throws:
IllegalArgumentException
- if provided quality scores length is smaller than required size (i.e. 7 matched pair of points).
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, double[] qualityScores, List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints) Constructor.- Parameters:
fundMatrixEstimatorMethod
- method for non-robust fundamental matrix estimator.qualityScores
- quality scores corresponding to each provided pair of matched points.leftPoints
- 2D points on left view.rightPoints
- 2D points on right view.- Throws:
IllegalArgumentException
- if provided list of points or quality scores do not have the same length or their length is less than 7 points.
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(FundamentalMatrixEstimatorMethod fundMatrixEstimatorMethod, double[] qualityScores, List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints, FundamentalMatrixRobustEstimatorListener listener) Constructor.- Parameters:
fundMatrixEstimatorMethod
- method for non-robust fundamental matrix estimator.qualityScores
- quality scores corresponding to each provided pair of matched points.leftPoints
- 2D points on left view.rightPoints
- 2D points on right view.listener
- listener to be notified of events such as when estimation starts, ends or its progress significantly changes.- Throws:
IllegalArgumentException
- if provided list of points or quality scores do not have the same length or their length is less than 7 points.
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator()Constructor. -
PROMedSFundamentalMatrixRobustEstimator
Constructor.- Parameters:
listener
- listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints) Constructor.- Parameters:
leftPoints
- 2D points on left view.rightPoints
- 2D points on right view.- Throws:
IllegalArgumentException
- if provided list of points do not have the same length or their length is less than 8 points.
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints, FundamentalMatrixRobustEstimatorListener listener) Constructor.- Parameters:
leftPoints
- 2D points on left view.rightPoints
- 2D points on right view.listener
- listener to be notified of events such as when estimation starts, ends or its progress significantly changes.- Throws:
IllegalArgumentException
- if provided list of points do not have the same length or their length is less than 8 points.
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(double[] qualityScores) Constructor.- Parameters:
qualityScores
- quality scores corresponding to each provided pair of matched points.- Throws:
IllegalArgumentException
- if provided quality scores length is smaller than required size (i.e. 7 matched pair of points).
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(double[] qualityScores, FundamentalMatrixRobustEstimatorListener listener) Constructor.- Parameters:
qualityScores
- quality scores corresponding to each provided pair of matched points.listener
- listener to be notified of events such as when estimation starts, ends or its progress significantly changes.- Throws:
IllegalArgumentException
- if provided quality scores length is smaller than required size (i.e. 7 matched pair of points).
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(double[] qualityScores, List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints) Constructor.- Parameters:
qualityScores
- quality scores corresponding to each provided pair of matched points.leftPoints
- 2D points on left view.rightPoints
- 2D points on right view.- Throws:
IllegalArgumentException
- if provided list of points or quality scores do not have the same length or their length is less than 7 points.
-
PROMedSFundamentalMatrixRobustEstimator
public PROMedSFundamentalMatrixRobustEstimator(double[] qualityScores, List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints, FundamentalMatrixRobustEstimatorListener listener) Constructor.- Parameters:
qualityScores
- quality scores corresponding to each provided pair of matched points.leftPoints
- 2D points on left view.rightPoints
- 2D points on right view.listener
- listener to be notified of events such as when estimation starts, ends or its progress significantly changes.- Throws:
IllegalArgumentException
- if provided list of points or quality scores do not have the same length or their length is less than 7 points.
-
-
Method Details
-
setPoints
public void setPoints(List<com.irurueta.geometry.Point2D> leftPoints, List<com.irurueta.geometry.Point2D> rightPoints) throws com.irurueta.geometry.estimators.LockedException Sets matched 2D points on both left and right views.- Overrides:
setPoints
in classFundamentalMatrixRobustEstimator
- Parameters:
leftPoints
- matched 2D points on left view.rightPoints
- matched 2D points on right view.- Throws:
com.irurueta.geometry.estimators.LockedException
- if this fundamental matrix estimator is locked.IllegalArgumentException
- if provided matched points on left and right views do not have the same length or if their length is less than 8 points.
-
getStopThreshold
public double getStopThreshold()Returns threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough. Once a solution is found that generates a threshold below this value, the algorithm will stop. The stop threshold can be used to prevent the LMedS algorithm iterating too many times in cases where samples have a very similar accuracy. For instance, in cases where proportion of outliers is very small (close to 0%), and samples are very accurate (i.e. 1e-6), the algorithm would iterate for a long time trying to find the best solution when indeed there is no need to do that if a reasonable threshold has already been reached. Because of this behaviour the stop threshold can be set to a value much lower than the one typically used in RANSAC, and yet the algorithm could still produce even smaller thresholds in estimated results.- Returns:
- stop threshold to stop the algorithm prematurely when a certain accuracy has been reached.
-
setStopThreshold
public void setStopThreshold(double stopThreshold) throws com.irurueta.geometry.estimators.LockedException Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough. Once a solution is found that generates a threshold below this value, the algorithm will stop. The stop threshold can be used to prevent the LMedS algorithm iterating too many times in cases where samples have a very similar accuracy. For instance, in cases where proportion of outliers is very small (close to 0%), and samples are very accurate (i.e. 1e-6), the algorithm would iterate for a long time trying to find the best solution when indeed there is no need to do that if a reasonable threshold has already been reached. Because of this behaviour the stop threshold can be set to a value much lower than the one typically used in RANSAC, and yet the algorithm could still produce even smaller thresholds in estimated results.- Parameters:
stopThreshold
- stop threshold to stop the algorithm prematurely when a certain accuracy has been reached.- Throws:
IllegalArgumentException
- if provided value is zero or negative.com.irurueta.geometry.estimators.LockedException
- if robust estimator is locked because an estimation is already in progress.
-
getQualityScores
public double[] getQualityScores()Returns quality scores corresponding to each provided pair of points. The larger the score value the better the quality of the sampled matched pair of points.- Overrides:
getQualityScores
in classFundamentalMatrixRobustEstimator
- Returns:
- quality scores corresponding to each pair of points.
-
setQualityScores
public void setQualityScores(double[] qualityScores) throws com.irurueta.geometry.estimators.LockedException Sets quality scores corresponding to each provided pair of points. The larger the score value the better the quality of the sampled matched pair of points.- Overrides:
setQualityScores
in classFundamentalMatrixRobustEstimator
- Parameters:
qualityScores
- quality scores corresponding to each pair of points.- Throws:
com.irurueta.geometry.estimators.LockedException
- if robust estimator is locked because an estimation is already in progress.IllegalArgumentException
- if provided quality scores length is smaller than MINIMUM_SIZE (i.e. 3 samples).
-
isReady
public boolean isReady()Returns value indicating whether required data has been provided so that fundamental matrix estimation can start. This is true when input data (i.e. 7 pairs of matched 2D points and their quality scores) are provided. If true, estimator is ready to compute a fundamental matrix, otherwise more data needs to be provided.- Overrides:
isReady
in classFundamentalMatrixRobustEstimator
- Returns:
- true if estimator is ready, false otherwise.
-
estimate
public FundamentalMatrix estimate() throws com.irurueta.geometry.estimators.LockedException, com.irurueta.geometry.estimators.NotReadyException, com.irurueta.numerical.robust.RobustEstimatorExceptionEstimates a radial distortion using a robust estimator and the best set of matched 2D points found using the robust estimator.- Specified by:
estimate
in classFundamentalMatrixRobustEstimator
- Returns:
- a radial distortion.
- Throws:
com.irurueta.geometry.estimators.LockedException
- if robust estimator is locked because an estimation is already in progress.com.irurueta.geometry.estimators.NotReadyException
- if provided input data is not enough to start the estimation.com.irurueta.numerical.robust.RobustEstimatorException
- if estimation fails for any reason (i.e. numerical instability, no solution available, etc).
-
getMethod
public com.irurueta.numerical.robust.RobustEstimatorMethod getMethod()Returns method being used for robust estimation.- Specified by:
getMethod
in classFundamentalMatrixRobustEstimator
- Returns:
- method being used for robust estimation.
-
getRefinementStandardDeviation
protected double getRefinementStandardDeviation()Gets standard deviation used for Levenberg-Marquardt fitting during refinement. Returned value gives an indication of how much variance each residual has. Typically, this value is related to the threshold used on each robust estimation, since residuals of found inliers are within the range of such threshold.- Specified by:
getRefinementStandardDeviation
in classFundamentalMatrixRobustEstimator
- Returns:
- standard deviation used for refinement.
-
internalSetQualityScores
private void internalSetQualityScores(double[] qualityScores) Sets quality scores corresponding to each provided pair of matched points. This method is used internally and does not check whether instance is locked or not.- Parameters:
qualityScores
- quality scores to be set.- Throws:
IllegalArgumentException
- if provided quality scores length is smaller than 8 points.
-