predict

open fun predict(): Matrix

Estimates subsequent model state without control parameters.

Return

estimated state.

See also

Throws

SignalProcessingException

if something fails.


open fun predict(control: Matrix): Matrix

Estimates subsequent model state. The function estimates the subsequent stochastic model state by its current state and stores it at statePre:


x'<sub>k</sub>=A*x<sub>k</sub>+B*u<sub>k</sub>
P'<sub>k</sub>=A*P<sub>k-1</sub>*A<sup>T</sup> + Q,
where
x'<sub>k</sub> is predicted state (statePre),
x<sub>k-1</sub> is corrected state on the previous step (statePost)
    (should be initialized somehow in the beginning, zero vector by
default),
u<sub>k</sub> is external control (<code>control</code> parameter),
P'<sub>k</sub> is prior error covariance matrix (error_cov_pre)
P<sub>k-1</sub> is posteriori error covariance matrix on the previous
step (error_cov_post)
    (should be initialized somehow in the beginning, identity matrix by
default),

Return

estimated state as a 1 column matrix having dp rows (where dp = number of dynamic parameters).

Parameters

control

control vector (uk), should be null if there is no external control (controlParams=0). If provided and filter uses control parameters, it must be a 1 column matrix having cp rows (where cp = number of control parameters), otherwise a SignalProcessingException will be raised.

Throws

SignalProcessingException

if something fails.