1 /* 2 * Copyright (C) 2016 Alberto Irurueta Carro (alberto@irurueta.com) 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 package com.irurueta.numerical.robust; 17 18 import java.util.BitSet; 19 20 /** 21 * Base class defining inlier data for a robust estimator. 22 */ 23 public abstract class InliersData { 24 25 /** 26 * Residuals obtained for each sample of data. 27 */ 28 protected double[] residuals; 29 30 /** 31 * Number of inliers found on current iteration. 32 */ 33 protected int numInliers; 34 35 /** 36 * Returns efficient array indicating which samples are considered inliers 37 * and which ones aren't or null if inliers are not kept. 38 * 39 * @return array indicating which samples are considered inliers and which 40 * ones aren't, or null. 41 */ 42 public abstract BitSet getInliers(); 43 44 /** 45 * Returns residuals obtained for each sample of data or null if residuals 46 * are not kept. 47 * 48 * @return residuals obtained for each sample of data. 49 */ 50 public double[] getResiduals() { 51 return residuals; 52 } 53 54 /** 55 * Returns number of inliers found. 56 * 57 * @return number of inliers found. 58 */ 59 public int getNumInliers() { 60 return numInliers; 61 } 62 }