View Javadoc
1   /*
2    * Copyright (C) 2016 Alberto Irurueta Carro (alberto@irurueta.com)
3    *
4    * Licensed under the Apache License, Version 2.0 (the "License");
5    * you may not use this file except in compliance with the License.
6    * You may obtain a copy of the License at
7    *
8    *         http://www.apache.org/licenses/LICENSE-2.0
9    *
10   * Unless required by applicable law or agreed to in writing, software
11   * distributed under the License is distributed on an "AS IS" BASIS,
12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13   * See the License for the specific language governing permissions and
14   * limitations under the License.
15   */
16  package com.irurueta.numerical.polynomials.estimators;
17  
18  import com.irurueta.numerical.LockedException;
19  import com.irurueta.numerical.NotReadyException;
20  import com.irurueta.numerical.polynomials.Polynomial;
21  import com.irurueta.numerical.robust.PROSACRobustEstimator;
22  import com.irurueta.numerical.robust.PROSACRobustEstimatorListener;
23  import com.irurueta.numerical.robust.RobustEstimator;
24  import com.irurueta.numerical.robust.RobustEstimatorException;
25  import com.irurueta.numerical.robust.RobustEstimatorMethod;
26  
27  import java.util.ArrayList;
28  import java.util.List;
29  
30  /**
31   * Finds the best polynomial using PROSAC algorithm.
32   */
33  public class PROSACPolynomialRobustEstimator extends PolynomialRobustEstimator {
34  
35      /**
36       * Constant defining default threshold to determine whether polynomials are
37       * inliers or not.
38       * Threshold will be used to compare either algebraic or geometric distance
39       * of estimated polynomial respect each provided evaluation.
40       */
41      public static final double DEFAULT_THRESHOLD = 1e-6;
42  
43      /**
44       * Minimum value that can be set as threshold.
45       * Threshold must be strictly greater than 0.0.
46       */
47      public static final double MIN_THRESHOLD = 0.0;
48  
49      /**
50       * Threshold to determine whether polynomial evaluations are inlers or not
51       * when testing possible estimation solutions
52       */
53      private double threshold;
54  
55      /**
56       * Quality scores corresponding to each provided polynomial evaluation.
57       * The larger the score value the better the quality of the sample.
58       */
59      private double[] qualityScores;
60  
61      /**
62       * Constructor.
63       */
64      public PROSACPolynomialRobustEstimator() {
65          super();
66          threshold = DEFAULT_THRESHOLD;
67      }
68  
69      /**
70       * Constructor.
71       *
72       * @param degree degree of polynomial to be estimated.
73       * @throws IllegalArgumentException if provided degree is less than 1.
74       */
75      public PROSACPolynomialRobustEstimator(final int degree) {
76          super(degree);
77          threshold = DEFAULT_THRESHOLD;
78      }
79  
80      /**
81       * Constructor.
82       *
83       * @param evaluations collection of polynomial evaluations.
84       * @throws IllegalArgumentException if provided number of evaluations is
85       *                                  less than the required minimum.
86       */
87      public PROSACPolynomialRobustEstimator(final List<PolynomialEvaluation> evaluations) {
88          super(evaluations);
89          threshold = DEFAULT_THRESHOLD;
90      }
91  
92      /**
93       * Constructor.
94       *
95       * @param listener listener to be notified of events such as when estimation
96       *                 starts, ends or its progress significantly changes.
97       */
98      public PROSACPolynomialRobustEstimator(final PolynomialRobustEstimatorListener listener) {
99          super(listener);
100         threshold = DEFAULT_THRESHOLD;
101     }
102 
103     /**
104      * Constructor.
105      *
106      * @param degree      degree of polynomial to be estimated.
107      * @param evaluations collection of polynomial evaluations.
108      * @throws IllegalArgumentException if provided degree is less than 1 or if
109      *                                  provided number of evaluations is less than the required minimum for
110      *                                  provided degree.
111      */
112     public PROSACPolynomialRobustEstimator(final int degree, final List<PolynomialEvaluation> evaluations) {
113         super(degree, evaluations);
114         threshold = DEFAULT_THRESHOLD;
115     }
116 
117     /**
118      * Constructor.
119      *
120      * @param degree   degree of polynomial to be estimated.
121      * @param listener listener to be notified of events such as when estimation
122      *                 starts, ends or its progress significantly changes.
123      * @throws IllegalArgumentException if provided degree is less than 1.
124      */
125     public PROSACPolynomialRobustEstimator(final int degree, final PolynomialRobustEstimatorListener listener) {
126         super(degree, listener);
127         threshold = DEFAULT_THRESHOLD;
128     }
129 
130     /**
131      * Constructor.
132      *
133      * @param evaluations collection of polynomial evaluations.
134      * @param listener    listener to be notified of events such as when estimation
135      *                    starts, ends or its progress significantly changes.
136      * @throws IllegalArgumentException if provided number of evaluations is
137      *                                  less than the required minimum.
138      */
139     public PROSACPolynomialRobustEstimator(
140             final List<PolynomialEvaluation> evaluations, final PolynomialRobustEstimatorListener listener) {
141         super(evaluations, listener);
142         threshold = DEFAULT_THRESHOLD;
143     }
144 
145     /**
146      * Constructor.
147      *
148      * @param degree      degree of polynomial to be estimated.
149      * @param evaluations collection of polynomial evaluations.
150      * @param listener    listener to be notified of events such as when estimation
151      *                    starts, ends or its progress significantly changes.
152      * @throws IllegalArgumentException if provided degree is less than 1 or if
153      *                                  provided number of evaluations is less than the required minimum for
154      *                                  provided degree.
155      */
156     public PROSACPolynomialRobustEstimator(
157             final int degree, final List<PolynomialEvaluation> evaluations,
158             final PolynomialRobustEstimatorListener listener) {
159         super(degree, evaluations, listener);
160         threshold = DEFAULT_THRESHOLD;
161     }
162 
163     /**
164      * Returns threshold to determine whether polynomials are inliers or not
165      * when testing possible estimation solutions.
166      *
167      * @return threshold to determine whether polynomials are inliers or not
168      * when testing possible estimation solutions.
169      */
170     public double getThreshold() {
171         return threshold;
172     }
173 
174     /**
175      * Sets threshold to determine whether polynomials are inliers or not when
176      * testing possible estimation solutions.
177      *
178      * @param threshold threshold to determine whether polynomials are inliers
179      *                  or not when testing possible estimation solutions.
180      * @throws IllegalArgumentException if provided value is equal or less than
181      *                                  zero.
182      * @throws LockedException          if robust estimator is locked.
183      */
184     public void setThreshold(final double threshold) throws LockedException {
185         if (isLocked()) {
186             throw new LockedException();
187         }
188         if (threshold <= MIN_THRESHOLD) {
189             throw new IllegalArgumentException();
190         }
191         this.threshold = threshold;
192     }
193 
194     /**
195      * Returns quality scores corresponding to each provided point.
196      * The larger the score value the betther the quality of the sampled point
197      *
198      * @return quality scores corresponding to each point
199      */
200     @Override
201     public double[] getQualityScores() {
202         return qualityScores;
203     }
204 
205     /**
206      * Sets quality scores corresponding to each provided point.
207      * The larger the score value the better the quality of the sampled point.
208      *
209      * @param qualityScores quality scores corresponding to each point.
210      * @throws LockedException          if robust estimator is locked because an
211      *                                  estimation is already in progress.
212      * @throws IllegalArgumentException if provided quality scores length is
213      *                                  smaller than required minimum size.
214      */
215     @Override
216     public void setQualityScores(final double[] qualityScores) throws LockedException {
217         if (isLocked()) {
218             throw new LockedException();
219         }
220         internalSetQualityScores(qualityScores);
221     }
222 
223     /**
224      * Indicates if estimator is ready to start the polynomial estimation.
225      * This is true when input data (i.e. polynomial evaluations and quality
226      * scores) are provided and enough data is available.
227      *
228      * @return true if estimator is ready, false otherwise
229      */
230     @Override
231     public boolean isReady() {
232         return super.isReady() && qualityScores != null && qualityScores.length == evaluations.size();
233     }
234 
235 
236     /**
237      * Estimates polynomial.
238      *
239      * @return estimated polynomial.
240      * @throws LockedException          if robust estimator is locked because an
241      *                                  estimation is already in progress.
242      * @throws NotReadyException        if provided input data is not enough to start
243      *                                  the estimation.
244      * @throws RobustEstimatorException if estimation fails for any other reason
245      *                                  (i.e. numerical instability, no solution available, etc).
246      */
247     @Override
248     public Polynomial estimate() throws LockedException, NotReadyException, RobustEstimatorException {
249         if (isLocked()) {
250             throw new LockedException();
251         }
252         if (!isReady()) {
253             throw new NotReadyException();
254         }
255 
256         final PROSACRobustEstimator<Polynomial> innerEstimator = new PROSACRobustEstimator<>(
257                 new PROSACRobustEstimatorListener<>() {
258 
259                     // subset of evaluations picked on each iteration
260                     private final List<PolynomialEvaluation> subsetEvaluations = new ArrayList<>();
261 
262                     @Override
263                     public double getThreshold() {
264                         return threshold;
265                     }
266 
267                     @Override
268                     public int getTotalSamples() {
269                         return evaluations.size();
270                     }
271 
272                     @Override
273                     public int getSubsetSize() {
274                         return polynomialEstimator.getMinNumberOfEvaluations();
275                     }
276 
277                     @SuppressWarnings("DuplicatedCode")
278                     @Override
279                     public void estimatePreliminarSolutions(
280                             final int[] samplesIndices, final List<Polynomial> solutions) {
281                         subsetEvaluations.clear();
282                         for (var samplesIndex : samplesIndices) {
283                             subsetEvaluations.add(evaluations.get(samplesIndex));
284                         }
285 
286                         try {
287                             polynomialEstimator.setLMSESolutionAllowed(false);
288                             polynomialEstimator.setEvaluations(subsetEvaluations);
289 
290                             final var polynomial = polynomialEstimator.estimate();
291                             solutions.add(polynomial);
292                         } catch (final Exception e) {
293                             // if anything fails, no solution is added
294                         }
295                     }
296 
297                     @Override
298                     public double computeResidual(final Polynomial currentEstimation, final int i) {
299                         final var eval = evaluations.get(i);
300                         return getDistance(eval, currentEstimation);
301                     }
302 
303                     @Override
304                     public boolean isReady() {
305                         return PROSACPolynomialRobustEstimator.this.isReady();
306                     }
307 
308                     @Override
309                     public void onEstimateStart(final RobustEstimator<Polynomial> estimator) {
310                         if (listener != null) {
311                             listener.onEstimateStart(PROSACPolynomialRobustEstimator.this);
312                         }
313                     }
314 
315                     @Override
316                     public void onEstimateEnd(final RobustEstimator<Polynomial> estimator) {
317                         if (listener != null) {
318                             listener.onEstimateEnd(PROSACPolynomialRobustEstimator.this);
319                         }
320                     }
321 
322                     @Override
323                     public void onEstimateNextIteration(
324                             final RobustEstimator<Polynomial> estimator, final int iteration) {
325                         if (listener != null) {
326                             listener.onEstimateNextIteration(PROSACPolynomialRobustEstimator.this, iteration);
327                         }
328                     }
329 
330                     @Override
331                     public void onEstimateProgressChange(
332                             final RobustEstimator<Polynomial> estimator, final float progress) {
333                         if (listener != null) {
334                             listener.onEstimateProgressChange(PROSACPolynomialRobustEstimator.this, progress);
335                         }
336                     }
337 
338                     @Override
339                     public double[] getQualityScores() {
340                         return qualityScores;
341                     }
342                 });
343 
344         try {
345             locked = true;
346             innerEstimator.setConfidence(confidence);
347             innerEstimator.setMaxIterations(maxIterations);
348             innerEstimator.setProgressDelta(progressDelta);
349             return innerEstimator.estimate();
350         } finally {
351             locked = false;
352         }
353     }
354 
355     /**
356      * Returns method being used for robust estimation.
357      *
358      * @return method being used for robust estimation.
359      */
360     @Override
361     public RobustEstimatorMethod getMethod() {
362         return RobustEstimatorMethod.PROSAC;
363     }
364 
365     /**
366      * Sets quality scores corresponding to each provided polynomial evaluation.
367      * This method is used internally and does not check whether instance is
368      * locked or not
369      *
370      * @param qualityScores quality scores to be set
371      * @throws IllegalArgumentException if provided quality scores length is
372      *                                  smaller than required minimum size.
373      */
374     private void internalSetQualityScores(final double[] qualityScores) {
375         if (qualityScores.length < polynomialEstimator.getMinNumberOfEvaluations()) {
376             throw new IllegalArgumentException();
377         }
378 
379         this.qualityScores = qualityScores;
380     }
381 }