View Javadoc
1   /*
2    * Copyright (C) 2023 Alberto Irurueta Carro (alberto@irurueta.com)
3    *
4    * Licensed under the Apache License, Version 2.0 (the "License");
5    * you may not use this file except in compliance with the License.
6    * You may obtain a copy of the License at
7    *
8    *         http://www.apache.org/licenses/LICENSE-2.0
9    *
10   * Unless required by applicable law or agreed to in writing, software
11   * distributed under the License is distributed on an "AS IS" BASIS,
12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13   * See the License for the specific language governing permissions and
14   * limitations under the License.
15   */
16  package com.irurueta.numerical.integration;
17  
18  import com.irurueta.algebra.Matrix;
19  import com.irurueta.algebra.WrongSizeException;
20  import com.irurueta.numerical.EvaluationException;
21  import com.irurueta.numerical.interpolation.InterpolationException;
22  import com.irurueta.numerical.interpolation.PolynomialInterpolator;
23  
24  /**
25   * Computes matrix function integration by using Romberg integration.
26   */
27  public class RombergTrapezoidalQuadratureMatrixIntegrator extends RombergMatrixIntegrator<TrapezoidalMatrixQuadrature> {
28  
29      /**
30       * Default accuracy.
31       */
32      public static final double EPS = 1e-10;
33  
34      /**
35       * Maximum number of allowed steps.
36       */
37      private static final int JMAX = 20;
38  
39      /**
40       * Maximum number of allowed steps + 1.
41       */
42      private static final int JMAXP = JMAX + 1;
43  
44      /**
45       * Minimum required number of steps.
46       */
47      private static final int K = 5;
48  
49      /**
50       * Successive trapezoidal approximations.
51       */
52      private final Matrix[] s = new Matrix[JMAX];
53  
54      /**
55       * Successive trapezoidal step sizes.
56       */
57      private final double[] h = new double[JMAXP];
58  
59      /**
60       * Constructor.
61       *
62       * @param a        Lower limit of integration.
63       * @param b        Upper limit of integration.
64       * @param listener listener to evaluate a single dimension matrix (multivariate) function at
65       *                 required points.
66       * @param eps      required accuracy.
67       * @throws WrongSizeException if size notified by provided listener is invalid.
68       */
69      public RombergTrapezoidalQuadratureMatrixIntegrator(
70              final double a, final double b, final MatrixSingleDimensionFunctionEvaluatorListener listener,
71              final double eps) throws WrongSizeException {
72          super(new TrapezoidalMatrixQuadrature(a, b, listener), eps);
73      }
74  
75      /**
76       * Constructor with default accuracy.
77       *
78       * @param a        Lower limit of integration.
79       * @param b        Upper limit of integration.
80       * @param listener listener to evaluate a single dimension matrix (multivariate) function at
81       *                 required points.
82       * @throws WrongSizeException if size notified by provided listener is invalid.
83       */
84      public RombergTrapezoidalQuadratureMatrixIntegrator(
85              final double a, final double b, final MatrixSingleDimensionFunctionEvaluatorListener listener)
86              throws WrongSizeException {
87          this(a, b, listener, EPS);
88      }
89  
90      /**
91       * Integrates function between provided lower and upper limits.
92       *
93       * @param result instance where result of integration will be stored.
94       * @throws IntegrationException if integration fails for numerical reasons.
95       */
96      @SuppressWarnings("Duplicates")
97      @Override
98      public void integrate(final Matrix result) throws IntegrationException {
99          try {
100             final var rows = q.getRows();
101             final var columns = q.getColumns();
102             final var elems = rows * columns;
103             for (var i = 0; i < JMAX; i++) {
104                 s[i] = new Matrix(rows, columns);
105             }
106 
107             final var interpolators = new PolynomialInterpolator[elems];
108             final var sInterp = new double[elems][JMAX];
109             for (var i = 0; i < elems; i++) {
110                 sInterp[i] = new double[JMAX];
111                 interpolators[i] = new PolynomialInterpolator(h, sInterp[i], K, false);
112             }
113 
114             h[0] = 1.0;
115             for (var j = 1; j <= JMAX; j++) {
116                 q.next(s[j - 1]);
117                 // update sInterp
118                 for (var i = 0; i < elems; i++) {
119                     sInterp[i][j - 1] = s[j - 1].getElementAtIndex(i);
120                 }
121                 if (j >= K) {
122                     var finished = true;
123                     for (var i = 0; i < elems; i++) {
124                         final var ss = interpolators[i].rawinterp(j - K, 0.0);
125                         if (Double.isNaN(ss)) {
126                             throw new IntegrationException("NaN was found");
127                         }
128                         result.setElementAtIndex(i, ss);
129                         if (Math.abs(interpolators[i].getDy()) > eps * Math.abs(ss)) {
130                             finished = false;
131                         }
132                     }
133 
134                     if (finished) {
135                         return;
136                     }
137                 }
138                 h[j] = 0.25 * h[j - 1];
139             }
140         } catch (final EvaluationException | InterpolationException | WrongSizeException e) {
141             throw new IntegrationException(e);
142         }
143 
144         // Too many steps
145         throw new IntegrationException();
146     }
147 
148     /**
149      * Gets type of quadrature.
150      *
151      * @return type of quadrature.
152      */
153     @Override
154     public QuadratureType getQuadratureType() {
155         return QuadratureType.TRAPEZOIDAL;
156     }
157 }