1 /* 2 * Copyright (C) 2015 Alberto Irurueta Carro (alberto@irurueta.com) 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 package com.irurueta.numerical.fitting; 17 18 import com.irurueta.numerical.NotReadyException; 19 import com.irurueta.statistics.Gamma; 20 import com.irurueta.statistics.MaxIterationsExceededException; 21 22 /** 23 * Fits provided data (x,y) to a straight line following equation y = a + b*x, 24 * estimates parameters a and b their variances, covariance and their chi square 25 * value. 26 * This class is based on the implementation available at Numerical Recipes 27 * 3rd Ed, page 784. 28 */ 29 public class StraightLineFitter extends Fitter { 30 31 /** 32 * Array containing x coordinates of input data to be fitted to a straight 33 * line. 34 */ 35 private double[] x; 36 37 /** 38 * Array containing y coordinates of input data to be fitted to a straight 39 * line. 40 */ 41 private double[] y; 42 43 /** 44 * Standard deviations of each pair of points (x,y). This is optional, if 45 * not provided, variances of a and b will be estimated assuming equal 46 * error for all input points. 47 */ 48 private double[] sig; 49 50 /** 51 * Estimated "a" parameter of line following equation y = a + b*x 52 */ 53 private double a; 54 55 /** 56 * Estimated "b" parameter of line following equation y = a + b*X 57 */ 58 private double b; 59 60 /** 61 * Estimated standard deviation of parameter "a". 62 */ 63 private double siga; 64 65 /** 66 * Estimated standard deviation of parameter "b". 67 */ 68 private double sigb; 69 70 /** 71 * Estimated chi square value. 72 */ 73 private double chi2; 74 75 /** 76 * Estimated goodness-of-fit probability (i.e. that the fit would have a 77 * chi square value equal or larger than the estimated one). 78 */ 79 private double q; 80 81 /** 82 * Estimated standard deviation of provided input data. This is only 83 * estimated if array of standard deviations of input points is not provided. 84 */ 85 private double sigdat; 86 87 /** 88 * Constructor. 89 */ 90 public StraightLineFitter() { 91 q = 1.0; 92 chi2 = sigdat = 0.0; 93 } 94 95 /** 96 * Constructor. 97 * 98 * @param x x coordinates of input data to be fitted to a straight line. 99 * @param y y coordinates of input data to be fitted to a straight line. 100 * @throws IllegalArgumentException if provided arrays don't have the same 101 * length. 102 */ 103 public StraightLineFitter(final double[] x, final double[] y) { 104 this(); 105 setInputData(x, y); 106 } 107 108 /** 109 * Constructor. 110 * 111 * @param x x coordinates of input data to be fitted to a straight line. 112 * @param y y coordinates of input data to be fitted to a straight line. 113 * @param sig standard deviation (i.e. errors) of provided data. This is 114 * optional, if not provided, variances of a and b will be estimated 115 * assuming equal error for all input points. 116 * @throws IllegalArgumentException if provided arrays don't have the same 117 * length. 118 */ 119 public StraightLineFitter(final double[] x, final double[] y, final double[] sig) { 120 this(); 121 setInputDataAndStandardDeviations(x, y, sig); 122 } 123 124 /** 125 * Returns array containing x coordinates of input data to be fitted to a 126 * straight line. 127 * 128 * @return array containing x coordinates of input data to be fitted to a 129 * straight line. 130 */ 131 public double[] getX() { 132 return x; 133 } 134 135 /** 136 * Returns array containing y coordinates of input data to be fitted to a 137 * straight line. 138 * 139 * @return array containing y coordinates of input data to be fitted to a 140 * straight line. 141 */ 142 public double[] getY() { 143 return y; 144 } 145 146 /** 147 * Returns standard deviations of each pair of points (x,y). This is 148 * optional, if not provided, variances of a and b will be estimated 149 * assuming equal error for all input points. 150 * 151 * @return standard deviations of each pair of points (x,y). 152 */ 153 public double[] getSig() { 154 return sig; 155 } 156 157 /** 158 * Sets input data to fit a straight line to. 159 * 160 * @param x x coordinates. 161 * @param y y coordinates. 162 * @throws IllegalArgumentException if arrays don't have the same length. 163 */ 164 public final void setInputData(final double[] x, final double[] y) { 165 if (x.length != y.length) { 166 throw new IllegalArgumentException(); 167 } 168 169 this.x = x; 170 this.y = y; 171 this.sig = null; 172 } 173 174 /** 175 * Sets input data and standard deviations of input data to fit a straight 176 * line to. 177 * 178 * @param x x coordinates. 179 * @param y y coordinates. 180 * @param sig standard deviations of each pair of points (x,y). This is 181 * optional, if not provided, variances of a and b will be estimated 182 * assuming equal error for all input points. 183 * @throws IllegalArgumentException if arrays don't have the same length. 184 */ 185 public final void setInputDataAndStandardDeviations( 186 final double[] x, final double[] y, final double[] sig) { 187 if (sig != null) { 188 if (x.length != y.length || y.length != sig.length) { 189 throw new IllegalArgumentException(); 190 } 191 192 this.x = x; 193 this.y = y; 194 this.sig = sig; 195 } else { 196 setInputData(x, y); 197 } 198 } 199 200 201 /** 202 * Indicates whether this instance is ready because enough input data has 203 * been provided to start the fitting process. 204 * 205 * @return true if this fitter is ready, false otherwise. 206 */ 207 @Override 208 public boolean isReady() { 209 return x != null && y != null && x.length == y.length && (sig == null || sig.length == y.length); 210 } 211 212 /** 213 * Returns estimated "a" parameter of line following equation y = a + b*x 214 * 215 * @return estimated "a" parameter. 216 */ 217 public double getA() { 218 return a; 219 } 220 221 /** 222 * Returns estimated "b" parameter of line following equation y = a + b*x 223 * 224 * @return estimated "b" parameter 225 */ 226 public double getB() { 227 return b; 228 } 229 230 /** 231 * Returns estimated standard deviation of parameter "a". 232 * 233 * @return estimated standard deviation of parameter "a". 234 */ 235 public double getSigA() { 236 return siga; 237 } 238 239 /** 240 * Returns estimated standard deviation of parameter "b". 241 * 242 * @return estimated standard deviation of parameter "b". 243 */ 244 public double getSigB() { 245 return sigb; 246 } 247 248 /** 249 * Returns estimated chi square value. 250 * 251 * @return estimated chi square value. 252 */ 253 public double getChi2() { 254 return chi2; 255 } 256 257 /** 258 * Returns estimated goodness-of-fit probability (i.e. that the fit would 259 * have a chi square value equal or larger than the estimated one). 260 * 261 * @return estimated goodness-of-fit probability. 262 */ 263 public double getQ() { 264 return q; 265 } 266 267 /** 268 * Returns estimated standard deviation of provided input data. This is only 269 * estimated if array of standard deviations of input points is not provided. 270 * 271 * @return estimated standard deviation of provided input data. 272 */ 273 public double getSigdat() { 274 return sigdat; 275 } 276 277 /** 278 * Fits a straight line following equation y = a + b*x to provided data 279 * (x, y) so that parameters associated a, b can be estimated along with 280 * their variances, covariance and chi square value. 281 * 282 * @throws FittingException if fitting fails. 283 * @throws NotReadyException if enough input data has not yet been provided. 284 */ 285 @Override 286 public void fit() throws FittingException, NotReadyException { 287 if (!isReady()) { 288 throw new NotReadyException(); 289 } 290 291 resultAvailable = false; 292 293 if (sig != null) { 294 fitWithSig(); 295 } else { 296 fitWithoutSig(); 297 } 298 299 resultAvailable = true; 300 } 301 302 /** 303 * Fits data when standard deviations of input data is provided. 304 * 305 * @throws FittingException if fitting fails. 306 */ 307 private void fitWithSig() throws FittingException { 308 final var gam = new Gamma(); 309 int i; 310 double ss = 0.0; 311 double sx = 0.0; 312 double sy = 0.0; 313 double st2 = 0.0; 314 double t; 315 double wt; 316 final double sxoss; 317 final var ndata = x.length; 318 b = 0.0; 319 for (i = 0; i < ndata; i++) { 320 wt = 1.0 / Math.pow(sig[i], 2.0); 321 ss += wt; 322 sx += x[i] * wt; 323 sy += y[i] * wt; 324 } 325 sxoss = sx / ss; 326 for (i = 0; i < ndata; i++) { 327 t = (x[i] - sxoss) / sig[i]; 328 st2 += t * t; 329 b += t * y[i] / sig[i]; 330 } 331 b /= st2; 332 a = (sy - sx * b) / ss; 333 siga = Math.sqrt((1.0 + sx * sx / (ss * st2)) / ss); 334 sigb = Math.sqrt(1.0 / st2); 335 for (i = 0; i < ndata; i++) { 336 chi2 += Math.pow((y[i] - a - b * x[i]) / sig[i], 2.0); 337 } 338 try { 339 if (ndata > 2) { 340 q = gam.gammq(0.5 * (ndata - 2), 0.5 * chi2); 341 } 342 } catch (final MaxIterationsExceededException e) { 343 throw new FittingException(e); 344 } 345 } 346 347 /** 348 * Fits data when standard deviations of input data is not provided. 349 */ 350 private void fitWithoutSig() { 351 int i; 352 final double ss; 353 var sx = 0.0; 354 var sy = 0.0; 355 var st2 = 0.0; 356 double t; 357 final double sxoss; 358 final var ndata = x.length; 359 b = 0.0; 360 for (i = 0; i < ndata; i++) { 361 sx += x[i]; 362 sy += y[i]; 363 } 364 ss = ndata; 365 sxoss = sx / ss; 366 for (i = 0; i < ndata; i++) { 367 t = x[i] - sxoss; 368 st2 += t * t; 369 b += t * y[i]; 370 } 371 b /= st2; 372 a = (sy - sx * b) / ss; 373 siga = Math.sqrt((1.0 + sx * sx / (ss * st2)) / ss); 374 sigb = Math.sqrt(1.0 / st2); 375 for (i = 0; i < ndata; i++) { 376 chi2 += Math.pow(y[i] - a - b * x[i], 2.0); 377 } 378 if (ndata > 2) { 379 sigdat = Math.sqrt(chi2 / (ndata - 2)); 380 } 381 siga *= sigdat; 382 sigb *= sigdat; 383 } 384 }