1 /* 2 * Copyright (C) 2015 Alberto Irurueta Carro (alberto@irurueta.com) 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 package com.irurueta.numerical.fitting; 17 18 import com.irurueta.numerical.EvaluationException; 19 20 /** 21 * Interface to evaluate non-linear single dimensional functions. 22 * Evaluation of functions requires both function value at provided point x and 23 * function gradient respect to its parameters (i.e. derivatives respect to its 24 * parameters) 25 */ 26 public interface LevenbergMarquardtSingleDimensionFunctionEvaluator { 27 28 /** 29 * Creates array where estimated parameters will be stored. 30 * This array MUST contain the initial guessed solution for the Levenberg- 31 * Marquardt algorithm 32 * 33 * @return array where estimated parameters will be stored 34 */ 35 double[] createInitialParametersArray(); 36 37 /** 38 * Evaluates a non-linear single dimension function at provided point using 39 * provided parameters and returns its evaluation and derivatives of the 40 * function respect the function parameters 41 * 42 * @param i number of sample being evaluated 43 * @param point point where function is evaluated 44 * @param params initial parameters estimation to be tried. These will 45 * change as the Levenberg-Marquard algorithm iterates to the best solution. 46 * These are used as input parameters along with point to evaluate function 47 * @param derivatives partial derivatives of the function respect to each 48 * provided parameter 49 * @return function evaluation at provided point and using provided 50 * parameters 51 * @throws EvaluationException raised if something failed during the evaluation 52 */ 53 double evaluate(final int i, final double point, final double[] params, final double[] derivatives) 54 throws EvaluationException; 55 }