1 /* 2 * Copyright (C) 2015 Alberto Irurueta Carro (alberto@irurueta.com) 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 package com.irurueta.numerical.fitting; 17 18 import com.irurueta.algebra.Matrix; 19 import com.irurueta.numerical.EvaluationException; 20 21 /** 22 * Interface to evaluate non-linear multi variate and multidimensional 23 * functions. 24 * Evaluation of functions requires both function value at provided point x and 25 * function jacobian respect to its parameters (i.e. derivatives respect to its 26 * parameters for each function output or variable) 27 */ 28 public interface LevenbergMarquardtMultiVariateFunctionEvaluator { 29 30 /** 31 * Number of dimensions of points (i.e. length of input points arrays) 32 * evaluated by this function evaluator 33 * 34 * @return number of dimensions of points 35 */ 36 int getNumberOfDimensions(); 37 38 /** 39 * Number of variables of function f. This is equal to the length of the 40 * array obtained as function evaluations. Hence, a function f can 41 * be expressed as f = [f1, f2, ... fN], and the number of variables would 42 * be N 43 * 44 * @return number of variables of function f 45 */ 46 int getNumberOfVariables(); 47 48 /** 49 * Creates array where estimated parameters will be stored. 50 * This array MUST contain the initial guessed solution for the Levenberg- 51 * Marquardt algorithm 52 * 53 * @return array where estimated parameters will be stored 54 */ 55 double[] createInitialParametersArray(); 56 57 /** 58 * Evaluates a non-linear multi variate function at provided point using 59 * provided parameters and returns its evaluation and jacobian of the 60 * function respect the function parameters 61 * 62 * @param i number of sample being evaluated 63 * @param point point where function will be evaluated 64 * @param result result of function evaluation. Its length is equal to the 65 * number of function variables 66 * @param params initial parameters estimation to be tried. These will 67 * change as the Levenberg-Marquard algorithm iterates to the best solution. 68 * These are used as input parameters along with point to evaluate function 69 * @param jacobian jacobian containing partial derivatives of the function 70 * respect to each provided parameter for each function output or variable 71 * @throws EvaluationException raised if something failed during the evaluation 72 */ 73 void evaluate(final int i, final double[] point, final double[] result, final double[] params, 74 final Matrix jacobian) throws EvaluationException; 75 76 }