Uses of Class
com.irurueta.numerical.robust.RobustEstimator
Packages that use RobustEstimator
Package
Description
This package contains robust estimators that can be used to discard outliers
 for cases where a model of the data is known (i.e. estimating lines, planes
 or many other geometric objects, etc.)
- 
Uses of RobustEstimator in com.irurueta.numerical.robust
Subclasses of RobustEstimator in com.irurueta.numerical.robustModifier and TypeClassDescriptionclassThis class implements LMedS (Least Median of Squares) algorithm to robustly estimate a data model.classThis class implements MSAC (Median SAmple Consensus) algorithm to robustly estimate a data model.classThis class implements PROMedS (PROgressive least Median Sample) algorithm to robustly estimate a data model.classThis class implements PROSAC (PROgressive random SAmple Consensus) algorithm to robustly estimate a data model.classThis class implements RANSAC (RANdom SAmple Consensus) algorithm to robustly estimate a data model.Methods in com.irurueta.numerical.robust with parameters of type RobustEstimatorModifier and TypeMethodDescriptionvoidRobustEstimatorListener.onEstimateEnd(RobustEstimator<T> estimator) Called when estimation ends.voidRobustEstimatorListener.onEstimateNextIteration(RobustEstimator<T> estimator, int iteration) Called when estimator iterates to refine a possible solution.voidRobustEstimatorListener.onEstimateProgressChange(RobustEstimator<T> estimator, float progress) Called when estimation progress changes significantly.voidRobustEstimatorListener.onEstimateStart(RobustEstimator<T> estimator) Called when estimation starts.