Uses of Class
com.irurueta.numerical.robust.RobustEstimator
Packages that use RobustEstimator
Package
Description
This package contains robust estimators that can be used to discard outliers
for cases where a model of the data is known (i.e.
-
Uses of RobustEstimator in com.irurueta.numerical.robust
Subclasses of RobustEstimator in com.irurueta.numerical.robustModifier and TypeClassDescriptionclass
This class implements LMedS (Least Median of Squares) algorithm to robustly estimate a data model.class
This class implements MSAC (Median SAmple Consensus) algorithm to robustly estimate a data model.class
This class implements PROMedS (PROgressive least Median Sample) algorithm to robustly estimate a data model.class
This class implements PROSAC (PROgressive random SAmple Consensus) algorithm to robustly estimate a data model.class
This class implements RANSAC (RANdom SAmple Consensus) algorithm to robustly estimate a data model.Methods in com.irurueta.numerical.robust with parameters of type RobustEstimatorModifier and TypeMethodDescriptionvoid
RobustEstimatorListener.onEstimateEnd
(RobustEstimator<T> estimator) Called when estimation ends.void
RobustEstimatorListener.onEstimateNextIteration
(RobustEstimator<T> estimator, int iteration) Called when estimator iterates to refine a possible solution.void
RobustEstimatorListener.onEstimateProgressChange
(RobustEstimator<T> estimator, float progress) Called when estimation progress changes significantly.void
RobustEstimatorListener.onEstimateStart
(RobustEstimator<T> estimator) Called when estimation starts.