Uses of Class
com.irurueta.numerical.robust.NotEnoughSamplesException
Packages that use NotEnoughSamplesException
Package
Description
This package contains robust estimators that can be used to discard outliers
 for cases where a model of the data is known (i.e. estimating lines, planes
 or many other geometric objects, etc.)
- 
Uses of NotEnoughSamplesException in com.irurueta.numerical.robust
Methods in com.irurueta.numerical.robust that throw NotEnoughSamplesExceptionModifier and TypeMethodDescriptionvoidFastRandomSubsetSelector.computeRandomSubsets(int subsetSize, int[] result) Computes a random subset of indices within range of number of samples to be used on robust estimators.int[]SubsetSelector.computeRandomSubsets(int subsetSize) Computes a random subset of indices within range of number of samples to be used on robust estimators.abstract voidSubsetSelector.computeRandomSubsets(int subsetSize, int[] result) Computes a random subset of indices within range of number of samples to be used on robust estimators.voidFastRandomSubsetSelector.computeRandomSubsetsInRange(int minPos, int maxPos, int subsetSize, boolean pickLast, int[] result) Computes a random subset of indices within provided range of positions to be used on robust estimators.int[]SubsetSelector.computeRandomSubsetsInRange(int minPos, int maxPos, int subsetSize, boolean pickLast) Computes a random subset of indices within provided range of positions to be used on robust estimators.abstract voidSubsetSelector.computeRandomSubsetsInRange(int minPos, int maxPos, int subsetSize, boolean pickLast, int[] result) Computes a random subset of indices within provided range of positions to be used on robust estimators.