Uses of Class
com.irurueta.numerical.NotReadyException

Packages that use NotReadyException
Package
Description
This library contains packages for:
 
 
 
This package contains robust estimators that can be used to discard outliers for cases where a model of the data is known (i.e.
This package contains classes to find function roots.
  • Uses of NotReadyException in com.irurueta.numerical

    Modifier and Type
    Method
    Description
    double
    AccurateMaximumLikelihoodEstimator.estimate()
    Starts the estimation of the most likely value contained within provided input data array.
    double
    HistogramMaximumLikelihoodEstimator.estimate()
    Starts the estimation of the most likely value contained within provided input data array.
    abstract double
    MaximumLikelihoodEstimator.estimate()
    Starts the estimation of the most likely value contained within provided input data array.
  • Uses of NotReadyException in com.irurueta.numerical.fitting

    Modifier and Type
    Method
    Description
    abstract void
    Fitter.fit()
    Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value
    void
    LevenbergMarquardtMultiDimensionFitter.fit()
    Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
    void
    LevenbergMarquardtMultiVariateFitter.fit()
    Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
    void
    LevenbergMarquardtSingleDimensionFitter.fit()
    Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
    void
    SimpleSingleDimensionLinearFitter.fit()
    Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
    void
    StraightLineFitter.fit()
    Fits a straight line following equation y = a + b*x to provided data (x, y) so that parameters associated a, b can be estimated along with their variances, covariance and chi square value.
    void
    SvdMultiDimensionLinearFitter.fit()
    Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
    void
    SvdSingleDimensionLinearFitter.fit()
    Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.
  • Uses of NotReadyException in com.irurueta.numerical.optimization

    Modifier and Type
    Method
    Description
    private void
    PowellMultiOptimizer.buildDirections()
    Internal method to build or rebuild the set of directions if needed.
    void
    BracketedSingleOptimizer.computeBracket()
    Computes a bracket of values using the whole range of possible values as an initial guess.
    void
    BracketedSingleOptimizer.computeBracket(double minEvalPoint)
    Computes a bracket of values using provided value as a starting point, and assuming that bracket finishes at Double.MAX_VALUE.
    void
    BracketedSingleOptimizer.computeBracket(double minEvalPoint, double middleEvalPoint)
    Computes a bracket of values using provided values as a starting point.
    void
    BracketedSingleOptimizer.evaluateBracket()
    Computes function evaluations at provided or estimated bracket locations.
    void
    BrentSingleOptimizer.minimize()
    This function estimates a function minimum within provided or computed bracket of values.
    void
    ConjugateGradientMultiOptimizer.minimize()
    This function estimates a function minimum.
    void
    DerivativeBrentSingleOptimizer.minimize()
    This function estimates a function minimum within provided or computed bracket of values.
    void
    DerivativeConjugateGradientMultiOptimizer.minimize()
    This function estimates a function minimum.
    void
    GoldenSingleOptimizer.minimize()
    This function estimates a function minimum within provided or computed bracket of values.
    void
    Optimizer.minimize()
    This function estimates a function minimum.
    void
    PowellMultiOptimizer.minimize()
    This function estimates a function minimum.
    void
    QuasiNewtonMultiOptimizer.minimize()
    This function estimates a function minimum.
    void
    SimplexMultiOptimizer.minimize()
    This function estimates a function minimum.
  • Uses of NotReadyException in com.irurueta.numerical.polynomials.estimators

    Modifier and Type
    Method
    Description
    LMedSPolynomialRobustEstimator.estimate()
    Estimates polynomial.
    LMSEPolynomialEstimator.estimate()
    Estimates a polynomial based on provided evaluations.
    MSACPolynomialRobustEstimator.estimate()
    Estimates polynomial.
    abstract Polynomial
    PolynomialEstimator.estimate()
    Estimates a polynomial based on provided evaluations.
    abstract Polynomial
    PolynomialRobustEstimator.estimate()
    Estimates polynomial.
    PROMedSPolynomialRobustEstimator.estimate()
    Estimates polynomial.
    PROSACPolynomialRobustEstimator.estimate()
    Estimates polynomial.
    RANSACPolynomialRobustEstimator.estimate()
    Estimates polynomial.
    WeightedPolynomialEstimator.estimate()
    Estimates a polynomial based on provided evaluations.
  • Uses of NotReadyException in com.irurueta.numerical.robust

    Modifier and Type
    Method
    Description
    LMedSRobustEstimator.estimate()
    Robustly estimates an instance of T.
    MSACRobustEstimator.estimate()
    Robustly estimates an instance of T.
    PROMedSRobustEstimator.estimate()
    Robustly estimates an instance of T.
    PROSACRobustEstimator.estimate()
    Robustly estimates an instance of T.
    RANSACRobustEstimator.estimate()
    Robustly estimates an instance of T.
    abstract T
    RobustEstimator.estimate()
    Robustly estimates an instance of T.
  • Uses of NotReadyException in com.irurueta.numerical.roots

    Modifier and Type
    Method
    Description
    void
    BracketedSingleRootEstimator.computeBracket()
    Starting at zero, this method expands the range (i.e.
    void
    BracketedSingleRootEstimator.computeBracket(double point)
    Starting from provided point, this method expands the range (i.e.
    void
    BracketedSingleRootEstimator.computeBracket(double minEvalPoint, double maxEvalPoint)
    Starting from provided minimum and maximum values, this method expands the range (i.e.
    void
    BisectionSingleRootEstimator.estimate()
    Estimates a single root of the provided single dimension function contained within a given bracket of values.
    void
    BrentSingleRootEstimator.estimate()
    Estimates a local root for a given single dimension function being evaluated by provided listener.
    void
    FalsePositionSingleRootEstimator.estimate()
    Estimates a single root of the provided single dimension function contained within a given bracket of values.
    void
    FirstDegreePolynomialRootsEstimator.estimate()
    Estimates the root of provided polynomial.
    void
    LaguerrePolynomialRootsEstimator.estimate()
    Estimates the roots of provided polynomial.
    void
    NewtonRaphsonSingleRootEstimator.estimate()
    Estimates a local root for a given single dimension function being evaluated by provided listener.
    void
    RidderSingleRootEstimator.estimate()
    Estimates a local root for a given single dimension function being evaluated by provided listener.
    void
    RootEstimator.estimate()
    Estimates the root or roots for a given function.
    void
    SafeNewtonRaphsonSingleRootEstimator.estimate()
    Estimates a local root for a given single dimension function being evaluated by provided listener.
    void
    SecantSingleRootEstimator.estimate()
    Estimates a local root for a given single dimension function being evaluated by provided listener.
    void
    SecondDegreePolynomialRootsEstimator.estimate()
    Estimates the roots of provided polynomial.
    void
    ThirdDegreePolynomialRootsEstimator.estimate()
    Estimates the roots of provided polynomial.
    boolean
    SecondDegreePolynomialRootsEstimator.hasDoubleRoot()
    Returns boolean indicating whether this second degree polynomial has multiple roots (for the 2nd degree case this means 2 equal roots) This is true for polynomials of the form (x - r)^2 = x^2 - 2 * r * x + r^2, where r is the double root
    boolean
    ThirdDegreePolynomialRootsEstimator.hasMultipleRealRoot()
    Returns boolean indicating whether the polynomial has two real and equal roots and a third different one (multiplicity 2), or all three roots are real and equal (multiplicity 3).
    boolean
    ThirdDegreePolynomialRootsEstimator.hasOneRealRootAndTwoComplexConjugateRoots()
    Returns boolean indicating whether the polynomial has one real root and two complex conjugate roots.
    boolean
    ThirdDegreePolynomialRootsEstimator.hasThreeDistinctRealRoots()
    Returns boolean indicating whether the roots of the polynomial are three distinct and real roots or not.
    boolean
    SecondDegreePolynomialRootsEstimator.hasTwoComplexConjugateRoots()
    Returns boolean indicating whether the roots of the polynomial are two complex conjugate roots or not.
    boolean
    SecondDegreePolynomialRootsEstimator.hasTwoDistinctRealRoots()
    Returns boolean indicating whether the roots of the polynomial are two distinct and real roots or not.
    boolean
    FirstDegreePolynomialRootsEstimator.isFirstDegree()
    Returns boolean indicating whether polynomial parameters provided to this instance correspond to a valid first degree polynomial.
    boolean
    SecondDegreePolynomialRootsEstimator.isSecondDegree()
    Returns boolean indicating whether polynomial parameters provided to this instance correspond to a valid second degree polynomial.
    boolean
    ThirdDegreePolynomialRootsEstimator.isThirdDegree()
    Returns boolean indicating whether polynomial parameters provided to this instance correspond to a valid third degree polynomial.