Uses of Class
com.irurueta.numerical.NotReadyException
Packages that use NotReadyException
Package
Description
This library contains packages for:
This package contains robust estimators that can be used to discard outliers
for cases where a model of the data is known (i.e.
This package contains classes to find function roots.
-
Uses of NotReadyException in com.irurueta.numerical
Methods in com.irurueta.numerical that throw NotReadyExceptionModifier and TypeMethodDescriptiondouble
AccurateMaximumLikelihoodEstimator.estimate()
Starts the estimation of the most likely value contained within provided input data array.double
HistogramMaximumLikelihoodEstimator.estimate()
Starts the estimation of the most likely value contained within provided input data array.abstract double
MaximumLikelihoodEstimator.estimate()
Starts the estimation of the most likely value contained within provided input data array. -
Uses of NotReadyException in com.irurueta.numerical.fitting
Methods in com.irurueta.numerical.fitting that throw NotReadyExceptionModifier and TypeMethodDescriptionabstract void
Fitter.fit()
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square valuevoid
LevenbergMarquardtMultiDimensionFitter.fit()
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.void
LevenbergMarquardtMultiVariateFitter.fit()
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.void
LevenbergMarquardtSingleDimensionFitter.fit()
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.void
SimpleSingleDimensionLinearFitter.fit()
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.void
StraightLineFitter.fit()
Fits a straight line following equation y = a + b*x to provided data (x, y) so that parameters associated a, b can be estimated along with their variances, covariance and chi square value.void
SvdMultiDimensionLinearFitter.fit()
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value.void
SvdSingleDimensionLinearFitter.fit()
Fits a function to provided data so that parameters associated to that function can be estimated along with their covariance matrix and chi square value. -
Uses of NotReadyException in com.irurueta.numerical.optimization
Methods in com.irurueta.numerical.optimization that throw NotReadyExceptionModifier and TypeMethodDescriptionprivate void
PowellMultiOptimizer.buildDirections()
Internal method to build or rebuild the set of directions if needed.void
BracketedSingleOptimizer.computeBracket()
Computes a bracket of values using the whole range of possible values as an initial guess.void
BracketedSingleOptimizer.computeBracket
(double minEvalPoint) Computes a bracket of values using provided value as a starting point, and assuming that bracket finishes at Double.MAX_VALUE.void
BracketedSingleOptimizer.computeBracket
(double minEvalPoint, double middleEvalPoint) Computes a bracket of values using provided values as a starting point.void
BracketedSingleOptimizer.evaluateBracket()
Computes function evaluations at provided or estimated bracket locations.void
BrentSingleOptimizer.minimize()
This function estimates a function minimum within provided or computed bracket of values.void
ConjugateGradientMultiOptimizer.minimize()
This function estimates a function minimum.void
DerivativeBrentSingleOptimizer.minimize()
This function estimates a function minimum within provided or computed bracket of values.void
DerivativeConjugateGradientMultiOptimizer.minimize()
This function estimates a function minimum.void
GoldenSingleOptimizer.minimize()
This function estimates a function minimum within provided or computed bracket of values.void
Optimizer.minimize()
This function estimates a function minimum.void
PowellMultiOptimizer.minimize()
This function estimates a function minimum.void
QuasiNewtonMultiOptimizer.minimize()
This function estimates a function minimum.void
SimplexMultiOptimizer.minimize()
This function estimates a function minimum. -
Uses of NotReadyException in com.irurueta.numerical.polynomials.estimators
Methods in com.irurueta.numerical.polynomials.estimators that throw NotReadyExceptionModifier and TypeMethodDescriptionLMedSPolynomialRobustEstimator.estimate()
Estimates polynomial.LMSEPolynomialEstimator.estimate()
Estimates a polynomial based on provided evaluations.MSACPolynomialRobustEstimator.estimate()
Estimates polynomial.abstract Polynomial
PolynomialEstimator.estimate()
Estimates a polynomial based on provided evaluations.abstract Polynomial
PolynomialRobustEstimator.estimate()
Estimates polynomial.PROMedSPolynomialRobustEstimator.estimate()
Estimates polynomial.PROSACPolynomialRobustEstimator.estimate()
Estimates polynomial.RANSACPolynomialRobustEstimator.estimate()
Estimates polynomial.WeightedPolynomialEstimator.estimate()
Estimates a polynomial based on provided evaluations. -
Uses of NotReadyException in com.irurueta.numerical.robust
Methods in com.irurueta.numerical.robust that throw NotReadyExceptionModifier and TypeMethodDescriptionLMedSRobustEstimator.estimate()
Robustly estimates an instance of T.MSACRobustEstimator.estimate()
Robustly estimates an instance of T.PROMedSRobustEstimator.estimate()
Robustly estimates an instance of T.PROSACRobustEstimator.estimate()
Robustly estimates an instance of T.RANSACRobustEstimator.estimate()
Robustly estimates an instance of T.abstract T
RobustEstimator.estimate()
Robustly estimates an instance of T. -
Uses of NotReadyException in com.irurueta.numerical.roots
Methods in com.irurueta.numerical.roots that throw NotReadyExceptionModifier and TypeMethodDescriptionvoid
BracketedSingleRootEstimator.computeBracket()
Starting at zero, this method expands the range (i.e.void
BracketedSingleRootEstimator.computeBracket
(double point) Starting from provided point, this method expands the range (i.e.void
BracketedSingleRootEstimator.computeBracket
(double minEvalPoint, double maxEvalPoint) Starting from provided minimum and maximum values, this method expands the range (i.e.void
BisectionSingleRootEstimator.estimate()
Estimates a single root of the provided single dimension function contained within a given bracket of values.void
BrentSingleRootEstimator.estimate()
Estimates a local root for a given single dimension function being evaluated by provided listener.void
FalsePositionSingleRootEstimator.estimate()
Estimates a single root of the provided single dimension function contained within a given bracket of values.void
FirstDegreePolynomialRootsEstimator.estimate()
Estimates the root of provided polynomial.void
LaguerrePolynomialRootsEstimator.estimate()
Estimates the roots of provided polynomial.void
NewtonRaphsonSingleRootEstimator.estimate()
Estimates a local root for a given single dimension function being evaluated by provided listener.void
RidderSingleRootEstimator.estimate()
Estimates a local root for a given single dimension function being evaluated by provided listener.void
RootEstimator.estimate()
Estimates the root or roots for a given function.void
SafeNewtonRaphsonSingleRootEstimator.estimate()
Estimates a local root for a given single dimension function being evaluated by provided listener.void
SecantSingleRootEstimator.estimate()
Estimates a local root for a given single dimension function being evaluated by provided listener.void
SecondDegreePolynomialRootsEstimator.estimate()
Estimates the roots of provided polynomial.void
ThirdDegreePolynomialRootsEstimator.estimate()
Estimates the roots of provided polynomial.boolean
SecondDegreePolynomialRootsEstimator.hasDoubleRoot()
Returns boolean indicating whether this second degree polynomial has multiple roots (for the 2nd degree case this means 2 equal roots) This is true for polynomials of the form (x - r)^2 = x^2 - 2 * r * x + r^2, where r is the double rootboolean
ThirdDegreePolynomialRootsEstimator.hasMultipleRealRoot()
Returns boolean indicating whether the polynomial has two real and equal roots and a third different one (multiplicity 2), or all three roots are real and equal (multiplicity 3).boolean
ThirdDegreePolynomialRootsEstimator.hasOneRealRootAndTwoComplexConjugateRoots()
Returns boolean indicating whether the polynomial has one real root and two complex conjugate roots.boolean
ThirdDegreePolynomialRootsEstimator.hasThreeDistinctRealRoots()
Returns boolean indicating whether the roots of the polynomial are three distinct and real roots or not.boolean
SecondDegreePolynomialRootsEstimator.hasTwoComplexConjugateRoots()
Returns boolean indicating whether the roots of the polynomial are two complex conjugate roots or not.boolean
SecondDegreePolynomialRootsEstimator.hasTwoDistinctRealRoots()
Returns boolean indicating whether the roots of the polynomial are two distinct and real roots or not.boolean
FirstDegreePolynomialRootsEstimator.isFirstDegree()
Returns boolean indicating whether polynomial parameters provided to this instance correspond to a valid first degree polynomial.boolean
SecondDegreePolynomialRootsEstimator.isSecondDegree()
Returns boolean indicating whether polynomial parameters provided to this instance correspond to a valid second degree polynomial.boolean
ThirdDegreePolynomialRootsEstimator.isThirdDegree()
Returns boolean indicating whether polynomial parameters provided to this instance correspond to a valid third degree polynomial.