Uses of Class
com.irurueta.numerical.LockedException

Packages that use LockedException
Package
Description
This library contains packages for:
 
 
This package contains robust estimators that can be used to discard outliers for cases where a model of the data is known (i.e.
This package contains classes to find function roots.
  • Uses of LockedException in com.irurueta.numerical

    Modifier and Type
    Method
    Description
    double
    AccurateMaximumLikelihoodEstimator.estimate()
    Starts the estimation of the most likely value contained within provided input data array.
    double
    HistogramMaximumLikelihoodEstimator.estimate()
    Starts the estimation of the most likely value contained within provided input data array.
    abstract double
    MaximumLikelihoodEstimator.estimate()
    Starts the estimation of the most likely value contained within provided input data array.
    void
    MaximumLikelihoodEstimator.setGaussianSigma(double gaussianSigma)
    Sets Gaussian sigma to be used on each sample when aggregating Gaussian functions centered at each input data sample value.
    void
    AccurateMaximumLikelihoodEstimator.setHistogramInitialSolutionUsed(boolean used)
    Sets boolean that indicates that an initial coarse solution will be computed first by using an internal HistogramMaximumLikelihoodEstimator in order to initialize the internal BrentSingleOptimizer to obtain a more accurate solution.
    void
    MaximumLikelihoodEstimator.setInputData(double[] inputData)
    Sets array containing input data to be used to find the most likely value.
    void
    MaximumLikelihoodEstimator.setInputData(double[] inputData, double minValue, double maxValue)
    Sets array containing input data to be used to find the most likely value along with the minimum and maximum values assumed to be contained in it.
    void
    MaximumLikelihoodEstimator.setMinMaxValues(double minValue, double maxValue)
    Sets minimum and maximum value assumed to be found in input data array.
    void
    HistogramMaximumLikelihoodEstimator.setNumberOfBins(int numberOfBins)
    Sets number of bins to be used on the histogram.
  • Uses of LockedException in com.irurueta.numerical.optimization

    Modifier and Type
    Method
    Description
    void
    BracketedSingleOptimizer.computeBracket()
    Computes a bracket of values using the whole range of possible values as an initial guess.
    void
    BracketedSingleOptimizer.computeBracket(double minEvalPoint)
    Computes a bracket of values using provided value as a starting point, and assuming that bracket finishes at Double.MAX_VALUE.
    void
    BracketedSingleOptimizer.computeBracket(double minEvalPoint, double middleEvalPoint)
    Computes a bracket of values using provided values as a starting point.
    void
    BracketedSingleOptimizer.evaluateBracket()
    Computes function evaluations at provided or estimated bracket locations.
    void
    BrentSingleOptimizer.minimize()
    This function estimates a function minimum within provided or computed bracket of values.
    void
    ConjugateGradientMultiOptimizer.minimize()
    This function estimates a function minimum.
    void
    DerivativeBrentSingleOptimizer.minimize()
    This function estimates a function minimum within provided or computed bracket of values.
    void
    DerivativeConjugateGradientMultiOptimizer.minimize()
    This function estimates a function minimum.
    void
    GoldenSingleOptimizer.minimize()
    This function estimates a function minimum within provided or computed bracket of values.
    void
    Optimizer.minimize()
    This function estimates a function minimum.
    void
    PowellMultiOptimizer.minimize()
    This function estimates a function minimum.
    void
    QuasiNewtonMultiOptimizer.minimize()
    This function estimates a function minimum.
    void
    SimplexMultiOptimizer.minimize()
    This function estimates a function minimum.
    void
    BracketedSingleOptimizer.setBracket(double minEvalPoint, double middleEvalPoint, double maxEvalPoint)
    Sets a bracket of values to later search for a minimum.
    void
    DerivativeBrentSingleOptimizer.setDerivativeListener(SingleDimensionFunctionEvaluatorListener derivativeListener)
    Sets derivative listener that gets function derivative.
    void
    ConjugateGradientMultiOptimizer.setGradientListener(GradientFunctionEvaluatorListener gradientListener)
    Sets gradient listener in charge of obtaining gradient values for the function to be evaluated.
    void
    DerivativeLineMultiOptimizer.setGradientListener(GradientFunctionEvaluatorListener gradientListener)
    Sets gradient listener.
    void
    QuasiNewtonMultiOptimizer.setGradientListener(GradientFunctionEvaluatorListener gradientListener)
    Sets gradient listener in charge of obtaining gradient values for the function to be evaluated.
    void
    Sets listener to evaluate a multidimensional function.
    void
    Sets listener.
    void
    Optimizer.setOnIterationCompletedListener(OnIterationCompletedListener iterationCompletedListener)
    Sets listener to handle minimization events.
    void
    PowellMultiOptimizer.setPointAndDirections(double[] point, com.irurueta.algebra.Matrix directions)
    Sets start point and set of directions to start looking for minimum.
    void
    SimplexMultiOptimizer.setSimplex(double[] startPoint, double delta)
    Sets a simplex defined as a central point and a set of surrounding points at distance delta.
    void
    SimplexMultiOptimizer.setSimplex(double[] startPoint, double[] deltas)
    Sets a simplex defined as a central point and a set of surrounding points at their corresponding distance deltas[i], where "i" corresponds to one position of provided array of distances.
    void
    SimplexMultiOptimizer.setSimplex(com.irurueta.algebra.Matrix simplex)
    Sets simplex as a matrix containing on each row a point of the simplex.
    void
    ConjugateGradientMultiOptimizer.setStartPoint(double[] point)
    Sets start point where local minimum is searched nearby.
    void
    DerivativeConjugateGradientMultiOptimizer.setStartPoint(double[] point)
    Sets start point where local minimum is searched nearby.
    void
    PowellMultiOptimizer.setStartPoint(double[] startPoint)
    Sets start point where local minimum is searched nearby.
    void
    QuasiNewtonMultiOptimizer.setStartPoint(double[] startPoint)
    Sets start point where algorithm will be started.
    void
    DerivativeLineMultiOptimizer.setStartPointAndDirection(double[] point, double[] direction)
    Internal method to set start point and direction to start the search for a local minimum.
    void
    LineMultiOptimizer.setStartPointAndDirection(double[] point, double[] direction)
    Internal method to set start point and direction to start the search for a local minimum.
    void
    BrentSingleOptimizer.setTolerance(double tolerance)
    Sets algorithm's tolerance.
    void
    ConjugateGradientMultiOptimizer.setTolerance(double tolerance)
    Sets tolerance or accuracy to be expected on estimated local minimum.
    void
    DerivativeBrentSingleOptimizer.setTolerance(double tolerance)
    Sets tolerance value.
    void
    DerivativeConjugateGradientMultiOptimizer.setTolerance(double tolerance)
    Sets tolerance or accuracy to be expected on estimated local minimum.
    void
    GoldenSingleOptimizer.setTolerance(double tolerance)
    Sets algorithm's tolerance.
    void
    PowellMultiOptimizer.setTolerance(double tolerance)
    Sets tolerance or accuracy to be expected on estimated local minimum.
    void
    QuasiNewtonMultiOptimizer.setTolerance(double tolerance)
    Sets tolerance or accuracy to be expected on estimated local minimum.
    void
    SimplexMultiOptimizer.setTolerance(double tolerance)
    Sets tolerance or accuracy to be expected on estimated local minimum.
    void
    ConjugateGradientMultiOptimizer.setUsePolakRibiere(boolean useIt)
    Sets boolean indicating whether Polak-Ribiere method or Fletcher-Reeves method is used.
    void
    DerivativeConjugateGradientMultiOptimizer.setUsePolakRibiere(boolean useIt)
    Sets boolean indicating whether Polak-Ribiere method or Fletcher-Reeves method is used.
  • Uses of LockedException in com.irurueta.numerical.polynomials.estimators

    Modifier and Type
    Method
    Description
    LMedSPolynomialRobustEstimator.estimate()
    Estimates polynomial.
    LMSEPolynomialEstimator.estimate()
    Estimates a polynomial based on provided evaluations.
    MSACPolynomialRobustEstimator.estimate()
    Estimates polynomial.
    abstract Polynomial
    PolynomialEstimator.estimate()
    Estimates a polynomial based on provided evaluations.
    abstract Polynomial
    PolynomialRobustEstimator.estimate()
    Estimates polynomial.
    PROMedSPolynomialRobustEstimator.estimate()
    Estimates polynomial.
    PROSACPolynomialRobustEstimator.estimate()
    Estimates polynomial.
    RANSACPolynomialRobustEstimator.estimate()
    Estimates polynomial.
    WeightedPolynomialEstimator.estimate()
    Estimates a polynomial based on provided evaluations.
    void
    PolynomialRobustEstimator.setConfidence(double confidence)
    Sets amount of confidence expressed as a value between 0.0 and 1.0 (which is equivalent to 100%).
    void
    PolynomialEstimator.setDegree(int degree)
    Sets degree of polynomial to be estimated.
    void
    PolynomialRobustEstimator.setDegree(int degree)
    Sets degree of polynomial to be estimated.
    void
    PolynomialEstimator.setDegreeAndEvaluations(int degree, List<PolynomialEvaluation> evaluations)
    Sets degree of polynomial to be estimated and collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of specified degree.
    void
    WeightedPolynomialEstimator.setDegreeEvaluationsAndWeights(int degree, List<PolynomialEvaluation> evaluations, double[] weights)
    Sets degree of polynomial to be estimated and collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of specified degree.
    void
    PolynomialEstimator.setEvaluations(List<PolynomialEvaluation> evaluations)
    Sets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
    void
    PolynomialRobustEstimator.setEvaluations(List<PolynomialEvaluation> evaluations)
    Sets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.
    void
    WeightedPolynomialEstimator.setEvaluationsAndWeights(List<PolynomialEvaluation> evaluations, double[] weights)
    Sets collection of polynomial evaluations along with their corresponding weights.
    void
    PolynomialRobustEstimator.setGeometricDistanceUsed(boolean geometricDistanceUsed)
    Specifies whether geometric distance will be used to find outliers or algebraic distance will be used instead.
    void
    PolynomialEstimator.setListener(PolynomialEstimatorListener listener)
    Sets listener to be notified of events such as when estimation starts, ends or estimation progress changes.
    void
    LMSEPolynomialEstimator.setLMSESolutionAllowed(boolean allowed)
    Specified if an LMSE (Least Mean Square Error) solution is allowed if more evaluations than the required minimum are provided.
    void
    WeightedPolynomialEstimator.setMaxEvaluations(int maxEvaluations)
    Sets maximum number of evaluations to be weighted and taken into account.
    void
    PolynomialRobustEstimator.setMaxIterations(int maxIterations)
    Sets maximum allowed number of iterations.
    void
    PolynomialRobustEstimator.setProgressDelta(float progressDelta)
    Sets amount of progress variation before notifying a progress change during estimation.
    void
    PolynomialRobustEstimator.setQualityScores(double[] qualityScores)
    Sets quality scores corresponding to each polynomial evaluation.
    void
    PROMedSPolynomialRobustEstimator.setQualityScores(double[] qualityScores)
    Sets quality scores corresponding to each provided point.
    void
    PROSACPolynomialRobustEstimator.setQualityScores(double[] qualityScores)
    Sets quality scores corresponding to each provided point.
    void
    WeightedPolynomialEstimator.setSortWeightsEnabled(boolean sortWeights)
    Specifies whether weights are sorted by so that largest weighted evaluations are used first.
    void
    LMedSPolynomialRobustEstimator.setStopThreshold(double stopThreshold)
    Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
    void
    PROMedSPolynomialRobustEstimator.setStopThreshold(double stopThreshold)
    Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.
    void
    MSACPolynomialRobustEstimator.setThreshold(double threshold)
    Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
    void
    PROSACPolynomialRobustEstimator.setThreshold(double threshold)
    Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
    void
    RANSACPolynomialRobustEstimator.setThreshold(double threshold)
    Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.
  • Uses of LockedException in com.irurueta.numerical.robust

    Modifier and Type
    Method
    Description
    LMedSRobustEstimator.estimate()
    Robustly estimates an instance of T.
    MSACRobustEstimator.estimate()
    Robustly estimates an instance of T.
    PROMedSRobustEstimator.estimate()
    Robustly estimates an instance of T.
    PROSACRobustEstimator.estimate()
    Robustly estimates an instance of T.
    RANSACRobustEstimator.estimate()
    Robustly estimates an instance of T.
    abstract T
    RobustEstimator.estimate()
    Robustly estimates an instance of T.
    void
    PROMedSRobustEstimator.setBeta(double beta)
    Sets beta, which is the probability that a match is declared inlier by mistake, i.e.
    void
    PROSACRobustEstimator.setBeta(double beta)
    Sets beta, which is the probability that a match is declared inlier by mistake, i.e.
    void
    PROSACRobustEstimator.setComputeAndKeepInliersEnabled(boolean computeAndKeepInliers)
    Specifies whether inliers must be computed and kept.
    void
    RANSACRobustEstimator.setComputeAndKeepInliersEnabled(boolean computeAndKeepInliers)
    Specifies whether inliers must be computed and kept.
    void
    PROSACRobustEstimator.setComputeAndKeepResidualsEnabled(boolean computeAndKeepResiduals)
    Specifies whether residuals must be computed and kept.
    void
    RANSACRobustEstimator.setComputeAndKeepResidualsEnabled(boolean computeAndKeepResiduals)
    Specifies whether residuals must be computed and kept.
    void
    LMedSRobustEstimator.setConfidence(double confidence)
    Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
    void
    MSACRobustEstimator.setConfidence(double confidence)
    Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
    void
    PROMedSRobustEstimator.setConfidence(double confidence)
    Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
    void
    PROSACRobustEstimator.setConfidence(double confidence)
    Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
    void
    RANSACRobustEstimator.setConfidence(double confidence)
    Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).
    void
    PROMedSRobustEstimator.setEta0(double eta0)
    Sets eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
    void
    PROSACRobustEstimator.setEta0(double eta0)
    Sets eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).
    void
    LMedSRobustEstimator.setInlierFactor(double inlierFactor)
    Sets factor to normalize or adjust threshold to determine inliers.
    void
    PROMedSRobustEstimator.setInlierFactor(double inlierFactor)
    Sets factor to normalize or adjust threshold to determine inliers.
    void
    RobustEstimator.setListener(RobustEstimatorListener<T> listener)
    Sets listener to be notified of events such as when estimation starts, ends or its progress significantly changes.
    void
    LMedSRobustEstimator.setMaxIterations(int maxIterations)
    Sets maximum allowed number of iterations.
    void
    MSACRobustEstimator.setMaxIterations(int maxIterations)
    Sets maximum allowed number of iterations.
    void
    PROMedSRobustEstimator.setMaxIterations(int maxIterations)
    Sets maximum allowed number of iterations.
    void
    PROSACRobustEstimator.setMaxIterations(int maxIterations)
    Sets maximum allowed number of iterations.
    void
    RANSACRobustEstimator.setMaxIterations(int maxIterations)
    Sets maximum allowed number of iterations.
    void
    PROMedSRobustEstimator.setMaxOutliersProportion(double maxOutliersProportion)
    Sets maximum allowed outliers proportion in the input data.
    void
    PROSACRobustEstimator.setMaxOutliersProportion(double maxOutliersProportion)
    Sets maximum allowed outliers proportion in the input data.
    void
    RobustEstimator.setProgressDelta(float progressDelta)
    Sets amount of progress variation before notifying a progress change during estimation.
    void
    LMedSRobustEstimator.setStopThreshold(double stopThreshold)
    Sets threshold to be used to keep the algorithm iterating in case that best threshold is not small enough.
    void
    PROMedSRobustEstimator.setStopThresholdEnabled(boolean stopThresholdEnabled)
    Sets boolean indicating whether the algorithm must stop prematurely when dynamically computed threshold using median of residuals has a value lower than provided threshold in listener.
    void
    PROMedSRobustEstimator.setUseInlierThresholds(boolean useInlierThresholds)
    Sets flag indicating whether thresholds to determine inliers are used, or if only median of residuals is used.
  • Uses of LockedException in com.irurueta.numerical.roots

    Modifier and Type
    Method
    Description
    void
    BracketedSingleRootEstimator.computeBracket()
    Starting at zero, this method expands the range (i.e.
    void
    BracketedSingleRootEstimator.computeBracket(double point)
    Starting from provided point, this method expands the range (i.e.
    void
    BracketedSingleRootEstimator.computeBracket(double minEvalPoint, double maxEvalPoint)
    Starting from provided minimum and maximum values, this method expands the range (i.e.
    void
    BisectionSingleRootEstimator.estimate()
    Estimates a single root of the provided single dimension function contained within a given bracket of values.
    void
    BrentSingleRootEstimator.estimate()
    Estimates a local root for a given single dimension function being evaluated by provided listener.
    void
    FalsePositionSingleRootEstimator.estimate()
    Estimates a single root of the provided single dimension function contained within a given bracket of values.
    void
    FirstDegreePolynomialRootsEstimator.estimate()
    Estimates the root of provided polynomial.
    void
    LaguerrePolynomialRootsEstimator.estimate()
    Estimates the roots of provided polynomial.
    void
    NewtonRaphsonSingleRootEstimator.estimate()
    Estimates a local root for a given single dimension function being evaluated by provided listener.
    void
    RidderSingleRootEstimator.estimate()
    Estimates a local root for a given single dimension function being evaluated by provided listener.
    void
    RootEstimator.estimate()
    Estimates the root or roots for a given function.
    void
    SafeNewtonRaphsonSingleRootEstimator.estimate()
    Estimates a local root for a given single dimension function being evaluated by provided listener.
    void
    SecantSingleRootEstimator.estimate()
    Estimates a local root for a given single dimension function being evaluated by provided listener.
    void
    SecondDegreePolynomialRootsEstimator.estimate()
    Estimates the roots of provided polynomial.
    void
    ThirdDegreePolynomialRootsEstimator.estimate()
    Estimates the roots of provided polynomial.
    void
    BracketedSingleRootEstimator.setBracket(double minEvalPoint, double maxEvalPoint)
    Sets the bracket of values (i.e.
    void
    DerivativeSingleRootEstimator.setDerivativeListener(SingleDimensionFunctionEvaluatorListener derivativeListener)
    Sets derivative listener to evaluate a function's derivative.
    void
    Sets listener that evaluates a single dimension function in order to find its root.
    void
    LaguerrePolynomialRootsEstimator.setPolishRootsEnabled(boolean enable)
    Sets boolean indicating whether roots will be refined after an initial estimation.
    void
    FirstDegreePolynomialRootsEstimator.setPolynomialParameters(double[] polyParams)
    Set array of first degree polynomial parameters.
    void
    PolynomialRootsEstimator.setPolynomialParameters(com.irurueta.algebra.Complex[] polyParams)
    Sets parameters of a polynomial, taking into account that a polynomial of degree n is defined as: p(x) = a0 * x^n + a1 * x^(n - 1) + ...
    void
    SecondDegreePolynomialRootsEstimator.setPolynomialParameters(double[] polyParams)
    Set array of second degree polynomial parameters.
    void
    ThirdDegreePolynomialRootsEstimator.setPolynomialParameters(double[] polyParams)
    Set array of third degree polynomial parameters.
    void
    BisectionSingleRootEstimator.setTolerance(double tolerance)
    Sets tolerance to find a root.
    void
    BrentSingleRootEstimator.setTolerance(double tolerance)
    Sets tolerance value.
    void
    FalsePositionSingleRootEstimator.setTolerance(double tolerance)
    Sets tolerance to find a root.
    void
    NewtonRaphsonSingleRootEstimator.setTolerance(double tolerance)
    Sets tolerance value.
    void
    RidderSingleRootEstimator.setTolerance(double tolerance)
    Sets tolerance value.
    void
    SafeNewtonRaphsonSingleRootEstimator.setTolerance(double tolerance)
    Sets tolerance value.
    void
    SecantSingleRootEstimator.setTolerance(double tolerance)
    Sets tolerance value.