Uses of Class
com.irurueta.numerical.LockedException
Packages that use LockedException
Package
Description
This library contains packages for:
This package contains robust estimators that can be used to discard outliers
for cases where a model of the data is known (i.e.
This package contains classes to find function roots.
-
Uses of LockedException in com.irurueta.numerical
Methods in com.irurueta.numerical that throw LockedExceptionModifier and TypeMethodDescriptiondouble
AccurateMaximumLikelihoodEstimator.estimate()
Starts the estimation of the most likely value contained within provided input data array.double
HistogramMaximumLikelihoodEstimator.estimate()
Starts the estimation of the most likely value contained within provided input data array.abstract double
MaximumLikelihoodEstimator.estimate()
Starts the estimation of the most likely value contained within provided input data array.void
MaximumLikelihoodEstimator.setGaussianSigma
(double gaussianSigma) Sets Gaussian sigma to be used on each sample when aggregating Gaussian functions centered at each input data sample value.void
AccurateMaximumLikelihoodEstimator.setHistogramInitialSolutionUsed
(boolean used) Sets boolean that indicates that an initial coarse solution will be computed first by using an internal HistogramMaximumLikelihoodEstimator in order to initialize the internal BrentSingleOptimizer to obtain a more accurate solution.void
MaximumLikelihoodEstimator.setInputData
(double[] inputData) Sets array containing input data to be used to find the most likely value.void
MaximumLikelihoodEstimator.setInputData
(double[] inputData, double minValue, double maxValue) Sets array containing input data to be used to find the most likely value along with the minimum and maximum values assumed to be contained in it.void
MaximumLikelihoodEstimator.setMinMaxValues
(double minValue, double maxValue) Sets minimum and maximum value assumed to be found in input data array.void
HistogramMaximumLikelihoodEstimator.setNumberOfBins
(int numberOfBins) Sets number of bins to be used on the histogram. -
Uses of LockedException in com.irurueta.numerical.optimization
Methods in com.irurueta.numerical.optimization that throw LockedExceptionModifier and TypeMethodDescriptionvoid
BracketedSingleOptimizer.computeBracket()
Computes a bracket of values using the whole range of possible values as an initial guess.void
BracketedSingleOptimizer.computeBracket
(double minEvalPoint) Computes a bracket of values using provided value as a starting point, and assuming that bracket finishes at Double.MAX_VALUE.void
BracketedSingleOptimizer.computeBracket
(double minEvalPoint, double middleEvalPoint) Computes a bracket of values using provided values as a starting point.void
BracketedSingleOptimizer.evaluateBracket()
Computes function evaluations at provided or estimated bracket locations.void
BrentSingleOptimizer.minimize()
This function estimates a function minimum within provided or computed bracket of values.void
ConjugateGradientMultiOptimizer.minimize()
This function estimates a function minimum.void
DerivativeBrentSingleOptimizer.minimize()
This function estimates a function minimum within provided or computed bracket of values.void
DerivativeConjugateGradientMultiOptimizer.minimize()
This function estimates a function minimum.void
GoldenSingleOptimizer.minimize()
This function estimates a function minimum within provided or computed bracket of values.void
Optimizer.minimize()
This function estimates a function minimum.void
PowellMultiOptimizer.minimize()
This function estimates a function minimum.void
QuasiNewtonMultiOptimizer.minimize()
This function estimates a function minimum.void
SimplexMultiOptimizer.minimize()
This function estimates a function minimum.void
BracketedSingleOptimizer.setBracket
(double minEvalPoint, double middleEvalPoint, double maxEvalPoint) Sets a bracket of values to later search for a minimum.void
DerivativeBrentSingleOptimizer.setDerivativeListener
(SingleDimensionFunctionEvaluatorListener derivativeListener) Sets derivative listener that gets function derivative.void
ConjugateGradientMultiOptimizer.setGradientListener
(GradientFunctionEvaluatorListener gradientListener) Sets gradient listener in charge of obtaining gradient values for the function to be evaluated.void
DerivativeLineMultiOptimizer.setGradientListener
(GradientFunctionEvaluatorListener gradientListener) Sets gradient listener.void
QuasiNewtonMultiOptimizer.setGradientListener
(GradientFunctionEvaluatorListener gradientListener) Sets gradient listener in charge of obtaining gradient values for the function to be evaluated.void
MultiOptimizer.setListener
(MultiDimensionFunctionEvaluatorListener listener) Sets listener to evaluate a multidimensional function.void
SingleOptimizer.setListener
(SingleDimensionFunctionEvaluatorListener listener) Sets listener.void
Optimizer.setOnIterationCompletedListener
(OnIterationCompletedListener iterationCompletedListener) Sets listener to handle minimization events.void
PowellMultiOptimizer.setPointAndDirections
(double[] point, com.irurueta.algebra.Matrix directions) Sets start point and set of directions to start looking for minimum.void
SimplexMultiOptimizer.setSimplex
(double[] startPoint, double delta) Sets a simplex defined as a central point and a set of surrounding points at distance delta.void
SimplexMultiOptimizer.setSimplex
(double[] startPoint, double[] deltas) Sets a simplex defined as a central point and a set of surrounding points at their corresponding distance deltas[i], where "i" corresponds to one position of provided array of distances.void
SimplexMultiOptimizer.setSimplex
(com.irurueta.algebra.Matrix simplex) Sets simplex as a matrix containing on each row a point of the simplex.void
ConjugateGradientMultiOptimizer.setStartPoint
(double[] point) Sets start point where local minimum is searched nearby.void
DerivativeConjugateGradientMultiOptimizer.setStartPoint
(double[] point) Sets start point where local minimum is searched nearby.void
PowellMultiOptimizer.setStartPoint
(double[] startPoint) Sets start point where local minimum is searched nearby.void
QuasiNewtonMultiOptimizer.setStartPoint
(double[] startPoint) Sets start point where algorithm will be started.void
DerivativeLineMultiOptimizer.setStartPointAndDirection
(double[] point, double[] direction) Internal method to set start point and direction to start the search for a local minimum.void
LineMultiOptimizer.setStartPointAndDirection
(double[] point, double[] direction) Internal method to set start point and direction to start the search for a local minimum.void
BrentSingleOptimizer.setTolerance
(double tolerance) Sets algorithm's tolerance.void
ConjugateGradientMultiOptimizer.setTolerance
(double tolerance) Sets tolerance or accuracy to be expected on estimated local minimum.void
DerivativeBrentSingleOptimizer.setTolerance
(double tolerance) Sets tolerance value.void
DerivativeConjugateGradientMultiOptimizer.setTolerance
(double tolerance) Sets tolerance or accuracy to be expected on estimated local minimum.void
GoldenSingleOptimizer.setTolerance
(double tolerance) Sets algorithm's tolerance.void
PowellMultiOptimizer.setTolerance
(double tolerance) Sets tolerance or accuracy to be expected on estimated local minimum.void
QuasiNewtonMultiOptimizer.setTolerance
(double tolerance) Sets tolerance or accuracy to be expected on estimated local minimum.void
SimplexMultiOptimizer.setTolerance
(double tolerance) Sets tolerance or accuracy to be expected on estimated local minimum.void
ConjugateGradientMultiOptimizer.setUsePolakRibiere
(boolean useIt) Sets boolean indicating whether Polak-Ribiere method or Fletcher-Reeves method is used.void
DerivativeConjugateGradientMultiOptimizer.setUsePolakRibiere
(boolean useIt) Sets boolean indicating whether Polak-Ribiere method or Fletcher-Reeves method is used. -
Uses of LockedException in com.irurueta.numerical.polynomials.estimators
Methods in com.irurueta.numerical.polynomials.estimators that throw LockedExceptionModifier and TypeMethodDescriptionLMedSPolynomialRobustEstimator.estimate()
Estimates polynomial.LMSEPolynomialEstimator.estimate()
Estimates a polynomial based on provided evaluations.MSACPolynomialRobustEstimator.estimate()
Estimates polynomial.abstract Polynomial
PolynomialEstimator.estimate()
Estimates a polynomial based on provided evaluations.abstract Polynomial
PolynomialRobustEstimator.estimate()
Estimates polynomial.PROMedSPolynomialRobustEstimator.estimate()
Estimates polynomial.PROSACPolynomialRobustEstimator.estimate()
Estimates polynomial.RANSACPolynomialRobustEstimator.estimate()
Estimates polynomial.WeightedPolynomialEstimator.estimate()
Estimates a polynomial based on provided evaluations.void
PolynomialRobustEstimator.setConfidence
(double confidence) Sets amount of confidence expressed as a value between 0.0 and 1.0 (which is equivalent to 100%).void
PolynomialEstimator.setDegree
(int degree) Sets degree of polynomial to be estimated.void
PolynomialRobustEstimator.setDegree
(int degree) Sets degree of polynomial to be estimated.void
PolynomialEstimator.setDegreeAndEvaluations
(int degree, List<PolynomialEvaluation> evaluations) Sets degree of polynomial to be estimated and collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of specified degree.void
WeightedPolynomialEstimator.setDegreeEvaluationsAndWeights
(int degree, List<PolynomialEvaluation> evaluations, double[] weights) Sets degree of polynomial to be estimated and collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of specified degree.void
PolynomialEstimator.setEvaluations
(List<PolynomialEvaluation> evaluations) Sets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.void
PolynomialRobustEstimator.setEvaluations
(List<PolynomialEvaluation> evaluations) Sets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.void
WeightedPolynomialEstimator.setEvaluationsAndWeights
(List<PolynomialEvaluation> evaluations, double[] weights) Sets collection of polynomial evaluations along with their corresponding weights.void
PolynomialRobustEstimator.setGeometricDistanceUsed
(boolean geometricDistanceUsed) Specifies whether geometric distance will be used to find outliers or algebraic distance will be used instead.void
PolynomialEstimator.setListener
(PolynomialEstimatorListener listener) Sets listener to be notified of events such as when estimation starts, ends or estimation progress changes.void
LMSEPolynomialEstimator.setLMSESolutionAllowed
(boolean allowed) Specified if an LMSE (Least Mean Square Error) solution is allowed if more evaluations than the required minimum are provided.void
WeightedPolynomialEstimator.setMaxEvaluations
(int maxEvaluations) Sets maximum number of evaluations to be weighted and taken into account.void
PolynomialRobustEstimator.setMaxIterations
(int maxIterations) Sets maximum allowed number of iterations.void
PolynomialRobustEstimator.setProgressDelta
(float progressDelta) Sets amount of progress variation before notifying a progress change during estimation.void
PolynomialRobustEstimator.setQualityScores
(double[] qualityScores) Sets quality scores corresponding to each polynomial evaluation.void
PROMedSPolynomialRobustEstimator.setQualityScores
(double[] qualityScores) Sets quality scores corresponding to each provided point.void
PROSACPolynomialRobustEstimator.setQualityScores
(double[] qualityScores) Sets quality scores corresponding to each provided point.void
WeightedPolynomialEstimator.setSortWeightsEnabled
(boolean sortWeights) Specifies whether weights are sorted by so that largest weighted evaluations are used first.void
LMedSPolynomialRobustEstimator.setStopThreshold
(double stopThreshold) Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.void
PROMedSPolynomialRobustEstimator.setStopThreshold
(double stopThreshold) Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.void
MSACPolynomialRobustEstimator.setThreshold
(double threshold) Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.void
PROSACPolynomialRobustEstimator.setThreshold
(double threshold) Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.void
RANSACPolynomialRobustEstimator.setThreshold
(double threshold) Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions. -
Uses of LockedException in com.irurueta.numerical.robust
Methods in com.irurueta.numerical.robust that throw LockedExceptionModifier and TypeMethodDescriptionLMedSRobustEstimator.estimate()
Robustly estimates an instance of T.MSACRobustEstimator.estimate()
Robustly estimates an instance of T.PROMedSRobustEstimator.estimate()
Robustly estimates an instance of T.PROSACRobustEstimator.estimate()
Robustly estimates an instance of T.RANSACRobustEstimator.estimate()
Robustly estimates an instance of T.abstract T
RobustEstimator.estimate()
Robustly estimates an instance of T.void
PROMedSRobustEstimator.setBeta
(double beta) Sets beta, which is the probability that a match is declared inlier by mistake, i.e.void
PROSACRobustEstimator.setBeta
(double beta) Sets beta, which is the probability that a match is declared inlier by mistake, i.e.void
PROSACRobustEstimator.setComputeAndKeepInliersEnabled
(boolean computeAndKeepInliers) Specifies whether inliers must be computed and kept.void
RANSACRobustEstimator.setComputeAndKeepInliersEnabled
(boolean computeAndKeepInliers) Specifies whether inliers must be computed and kept.void
PROSACRobustEstimator.setComputeAndKeepResidualsEnabled
(boolean computeAndKeepResiduals) Specifies whether residuals must be computed and kept.void
RANSACRobustEstimator.setComputeAndKeepResidualsEnabled
(boolean computeAndKeepResiduals) Specifies whether residuals must be computed and kept.void
LMedSRobustEstimator.setConfidence
(double confidence) Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).void
MSACRobustEstimator.setConfidence
(double confidence) Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).void
PROMedSRobustEstimator.setConfidence
(double confidence) Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).void
PROSACRobustEstimator.setConfidence
(double confidence) Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).void
RANSACRobustEstimator.setConfidence
(double confidence) Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).void
PROMedSRobustEstimator.setEta0
(double eta0) Sets eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).void
PROSACRobustEstimator.setEta0
(double eta0) Sets eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).void
LMedSRobustEstimator.setInlierFactor
(double inlierFactor) Sets factor to normalize or adjust threshold to determine inliers.void
PROMedSRobustEstimator.setInlierFactor
(double inlierFactor) Sets factor to normalize or adjust threshold to determine inliers.void
RobustEstimator.setListener
(RobustEstimatorListener<T> listener) Sets listener to be notified of events such as when estimation starts, ends or its progress significantly changes.void
LMedSRobustEstimator.setMaxIterations
(int maxIterations) Sets maximum allowed number of iterations.void
MSACRobustEstimator.setMaxIterations
(int maxIterations) Sets maximum allowed number of iterations.void
PROMedSRobustEstimator.setMaxIterations
(int maxIterations) Sets maximum allowed number of iterations.void
PROSACRobustEstimator.setMaxIterations
(int maxIterations) Sets maximum allowed number of iterations.void
RANSACRobustEstimator.setMaxIterations
(int maxIterations) Sets maximum allowed number of iterations.void
PROMedSRobustEstimator.setMaxOutliersProportion
(double maxOutliersProportion) Sets maximum allowed outliers proportion in the input data.void
PROSACRobustEstimator.setMaxOutliersProportion
(double maxOutliersProportion) Sets maximum allowed outliers proportion in the input data.void
RobustEstimator.setProgressDelta
(float progressDelta) Sets amount of progress variation before notifying a progress change during estimation.void
LMedSRobustEstimator.setStopThreshold
(double stopThreshold) Sets threshold to be used to keep the algorithm iterating in case that best threshold is not small enough.void
PROMedSRobustEstimator.setStopThresholdEnabled
(boolean stopThresholdEnabled) Sets boolean indicating whether the algorithm must stop prematurely when dynamically computed threshold using median of residuals has a value lower than provided threshold in listener.void
PROMedSRobustEstimator.setUseInlierThresholds
(boolean useInlierThresholds) Sets flag indicating whether thresholds to determine inliers are used, or if only median of residuals is used. -
Uses of LockedException in com.irurueta.numerical.roots
Methods in com.irurueta.numerical.roots that throw LockedExceptionModifier and TypeMethodDescriptionvoid
BracketedSingleRootEstimator.computeBracket()
Starting at zero, this method expands the range (i.e.void
BracketedSingleRootEstimator.computeBracket
(double point) Starting from provided point, this method expands the range (i.e.void
BracketedSingleRootEstimator.computeBracket
(double minEvalPoint, double maxEvalPoint) Starting from provided minimum and maximum values, this method expands the range (i.e.void
BisectionSingleRootEstimator.estimate()
Estimates a single root of the provided single dimension function contained within a given bracket of values.void
BrentSingleRootEstimator.estimate()
Estimates a local root for a given single dimension function being evaluated by provided listener.void
FalsePositionSingleRootEstimator.estimate()
Estimates a single root of the provided single dimension function contained within a given bracket of values.void
FirstDegreePolynomialRootsEstimator.estimate()
Estimates the root of provided polynomial.void
LaguerrePolynomialRootsEstimator.estimate()
Estimates the roots of provided polynomial.void
NewtonRaphsonSingleRootEstimator.estimate()
Estimates a local root for a given single dimension function being evaluated by provided listener.void
RidderSingleRootEstimator.estimate()
Estimates a local root for a given single dimension function being evaluated by provided listener.void
RootEstimator.estimate()
Estimates the root or roots for a given function.void
SafeNewtonRaphsonSingleRootEstimator.estimate()
Estimates a local root for a given single dimension function being evaluated by provided listener.void
SecantSingleRootEstimator.estimate()
Estimates a local root for a given single dimension function being evaluated by provided listener.void
SecondDegreePolynomialRootsEstimator.estimate()
Estimates the roots of provided polynomial.void
ThirdDegreePolynomialRootsEstimator.estimate()
Estimates the roots of provided polynomial.void
BracketedSingleRootEstimator.setBracket
(double minEvalPoint, double maxEvalPoint) Sets the bracket of values (i.e.void
DerivativeSingleRootEstimator.setDerivativeListener
(SingleDimensionFunctionEvaluatorListener derivativeListener) Sets derivative listener to evaluate a function's derivative.void
SingleRootEstimator.setListener
(SingleDimensionFunctionEvaluatorListener listener) Sets listener that evaluates a single dimension function in order to find its root.void
LaguerrePolynomialRootsEstimator.setPolishRootsEnabled
(boolean enable) Sets boolean indicating whether roots will be refined after an initial estimation.void
FirstDegreePolynomialRootsEstimator.setPolynomialParameters
(double[] polyParams) Set array of first degree polynomial parameters.void
PolynomialRootsEstimator.setPolynomialParameters
(com.irurueta.algebra.Complex[] polyParams) Sets parameters of a polynomial, taking into account that a polynomial of degree n is defined as: p(x) = a0 * x^n + a1 * x^(n - 1) + ...void
SecondDegreePolynomialRootsEstimator.setPolynomialParameters
(double[] polyParams) Set array of second degree polynomial parameters.void
ThirdDegreePolynomialRootsEstimator.setPolynomialParameters
(double[] polyParams) Set array of third degree polynomial parameters.void
BisectionSingleRootEstimator.setTolerance
(double tolerance) Sets tolerance to find a root.void
BrentSingleRootEstimator.setTolerance
(double tolerance) Sets tolerance value.void
FalsePositionSingleRootEstimator.setTolerance
(double tolerance) Sets tolerance to find a root.void
NewtonRaphsonSingleRootEstimator.setTolerance
(double tolerance) Sets tolerance value.void
RidderSingleRootEstimator.setTolerance
(double tolerance) Sets tolerance value.void
SafeNewtonRaphsonSingleRootEstimator.setTolerance
(double tolerance) Sets tolerance value.void
SecantSingleRootEstimator.setTolerance
(double tolerance) Sets tolerance value.