Uses of Class
com.irurueta.numerical.LockedException
Packages that use LockedException
Package
Description
This library contains packages for:
This package contains robust estimators that can be used to discard outliers
for cases where a model of the data is known (i.e. estimating lines, planes
or many other geometric objects, etc.)
This package contains classes to find function roots.
-
Uses of LockedException in com.irurueta.numerical
Methods in com.irurueta.numerical that throw LockedExceptionModifier and TypeMethodDescriptiondoubleAccurateMaximumLikelihoodEstimator.estimate()Starts the estimation of the most likely value contained within provided input data array.doubleHistogramMaximumLikelihoodEstimator.estimate()Starts the estimation of the most likely value contained within provided input data array.abstract doubleMaximumLikelihoodEstimator.estimate()Starts the estimation of the most likely value contained within provided input data array.voidMaximumLikelihoodEstimator.setGaussianSigma(double gaussianSigma) Sets Gaussian sigma to be used on each sample when aggregating Gaussian functions centered at each input data sample value.voidAccurateMaximumLikelihoodEstimator.setHistogramInitialSolutionUsed(boolean used) Sets boolean that indicates that an initial coarse solution will be computed first by using an internal HistogramMaximumLikelihoodEstimator in order to initialize the internal BrentSingleOptimizer to obtain a more accurate solution.voidMaximumLikelihoodEstimator.setInputData(double[] inputData) Sets array containing input data to be used to find the most likely value.voidMaximumLikelihoodEstimator.setInputData(double[] inputData, double minValue, double maxValue) Sets array containing input data to be used to find the most likely value along with the minimum and maximum values assumed to be contained in it.voidMaximumLikelihoodEstimator.setMinMaxValues(double minValue, double maxValue) Sets minimum and maximum value assumed to be found in input data array.voidHistogramMaximumLikelihoodEstimator.setNumberOfBins(int numberOfBins) Sets number of bins to be used on the histogram. -
Uses of LockedException in com.irurueta.numerical.optimization
Methods in com.irurueta.numerical.optimization that throw LockedExceptionModifier and TypeMethodDescriptionvoidBracketedSingleOptimizer.computeBracket()Computes a bracket of values using the whole range of possible values as an initial guess.voidBracketedSingleOptimizer.computeBracket(double minEvalPoint) Computes a bracket of values using provided value as a starting point, and assuming that bracket finishes at Double.MAX_VALUE.voidBracketedSingleOptimizer.computeBracket(double minEvalPoint, double middleEvalPoint) Computes a bracket of values using provided values as a starting point.voidBracketedSingleOptimizer.evaluateBracket()Computes function evaluations at provided or estimated bracket locations.voidBrentSingleOptimizer.minimize()This function estimates a function minimum within provided or computed bracket of values.voidConjugateGradientMultiOptimizer.minimize()This function estimates a function minimum.voidDerivativeBrentSingleOptimizer.minimize()This function estimates a function minimum within provided or computed bracket of values.voidDerivativeConjugateGradientMultiOptimizer.minimize()This function estimates a function minimum.voidGoldenSingleOptimizer.minimize()This function estimates a function minimum within provided or computed bracket of values.voidOptimizer.minimize()This function estimates a function minimum.voidPowellMultiOptimizer.minimize()This function estimates a function minimum.voidQuasiNewtonMultiOptimizer.minimize()This function estimates a function minimum.voidSimplexMultiOptimizer.minimize()This function estimates a function minimum.voidBracketedSingleOptimizer.setBracket(double minEvalPoint, double middleEvalPoint, double maxEvalPoint) Sets a bracket of values to later search for a minimum.voidDerivativeBrentSingleOptimizer.setDerivativeListener(SingleDimensionFunctionEvaluatorListener derivativeListener) Sets derivative listener that gets function derivative.voidConjugateGradientMultiOptimizer.setGradientListener(GradientFunctionEvaluatorListener gradientListener) Sets gradient listener in charge of obtaining gradient values for the function to be evaluated.voidDerivativeLineMultiOptimizer.setGradientListener(GradientFunctionEvaluatorListener gradientListener) Sets gradient listener.voidQuasiNewtonMultiOptimizer.setGradientListener(GradientFunctionEvaluatorListener gradientListener) Sets gradient listener in charge of obtaining gradient values for the function to be evaluated.voidMultiOptimizer.setListener(MultiDimensionFunctionEvaluatorListener listener) Sets listener to evaluate a multidimensional function.voidSingleOptimizer.setListener(SingleDimensionFunctionEvaluatorListener listener) Sets listener.voidOptimizer.setOnIterationCompletedListener(OnIterationCompletedListener iterationCompletedListener) Sets listener to handle minimization events.voidPowellMultiOptimizer.setPointAndDirections(double[] point, com.irurueta.algebra.Matrix directions) Sets start point and set of directions to start looking for minimum.voidSimplexMultiOptimizer.setSimplex(double[] startPoint, double delta) Sets a simplex defined as a central point and a set of surrounding points at distance delta.voidSimplexMultiOptimizer.setSimplex(double[] startPoint, double[] deltas) Sets a simplex defined as a central point and a set of surrounding points at their corresponding distance deltas[i], where "i" corresponds to one position of provided array of distances.voidSimplexMultiOptimizer.setSimplex(com.irurueta.algebra.Matrix simplex) Sets simplex as a matrix containing on each row a point of the simplex.voidConjugateGradientMultiOptimizer.setStartPoint(double[] point) Sets start point where local minimum is searched nearby.voidDerivativeConjugateGradientMultiOptimizer.setStartPoint(double[] point) Sets start point where local minimum is searched nearby.voidPowellMultiOptimizer.setStartPoint(double[] startPoint) Sets start point where local minimum is searched nearby.voidQuasiNewtonMultiOptimizer.setStartPoint(double[] startPoint) Sets start point where algorithm will be started.voidDerivativeLineMultiOptimizer.setStartPointAndDirection(double[] point, double[] direction) Internal method to set start point and direction to start the search for a local minimum.voidLineMultiOptimizer.setStartPointAndDirection(double[] point, double[] direction) Internal method to set start point and direction to start the search for a local minimum.voidBrentSingleOptimizer.setTolerance(double tolerance) Sets algorithm's tolerance.voidConjugateGradientMultiOptimizer.setTolerance(double tolerance) Sets tolerance or accuracy to be expected on estimated local minimum.voidDerivativeBrentSingleOptimizer.setTolerance(double tolerance) Sets tolerance value.voidDerivativeConjugateGradientMultiOptimizer.setTolerance(double tolerance) Sets tolerance or accuracy to be expected on estimated local minimum.voidGoldenSingleOptimizer.setTolerance(double tolerance) Sets algorithm's tolerance.voidPowellMultiOptimizer.setTolerance(double tolerance) Sets tolerance or accuracy to be expected on estimated local minimum.voidQuasiNewtonMultiOptimizer.setTolerance(double tolerance) Sets tolerance or accuracy to be expected on estimated local minimum.voidSimplexMultiOptimizer.setTolerance(double tolerance) Sets tolerance or accuracy to be expected on estimated local minimum.voidConjugateGradientMultiOptimizer.setUsePolakRibiere(boolean useIt) Sets boolean indicating whether Polak-Ribiere method or Fletcher-Reeves method is used.voidDerivativeConjugateGradientMultiOptimizer.setUsePolakRibiere(boolean useIt) Sets boolean indicating whether Polak-Ribiere method or Fletcher-Reeves method is used. -
Uses of LockedException in com.irurueta.numerical.polynomials.estimators
Methods in com.irurueta.numerical.polynomials.estimators that throw LockedExceptionModifier and TypeMethodDescriptionLMedSPolynomialRobustEstimator.estimate()Estimates polynomial.LMSEPolynomialEstimator.estimate()Estimates a polynomial based on provided evaluations.MSACPolynomialRobustEstimator.estimate()Estimates polynomial.abstract PolynomialPolynomialEstimator.estimate()Estimates a polynomial based on provided evaluations.abstract PolynomialPolynomialRobustEstimator.estimate()Estimates polynomial.PROMedSPolynomialRobustEstimator.estimate()Estimates polynomial.PROSACPolynomialRobustEstimator.estimate()Estimates polynomial.RANSACPolynomialRobustEstimator.estimate()Estimates polynomial.WeightedPolynomialEstimator.estimate()Estimates a polynomial based on provided evaluations.voidPolynomialRobustEstimator.setConfidence(double confidence) Sets amount of confidence expressed as a value between 0.0 and 1.0 (which is equivalent to 100%).voidPolynomialEstimator.setDegree(int degree) Sets degree of polynomial to be estimated.voidPolynomialRobustEstimator.setDegree(int degree) Sets degree of polynomial to be estimated.voidPolynomialEstimator.setDegreeAndEvaluations(int degree, List<PolynomialEvaluation> evaluations) Sets degree of polynomial to be estimated and collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of specified degree.voidWeightedPolynomialEstimator.setDegreeEvaluationsAndWeights(int degree, List<PolynomialEvaluation> evaluations, double[] weights) Sets degree of polynomial to be estimated and collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of specified degree.voidPolynomialEstimator.setEvaluations(List<PolynomialEvaluation> evaluations) Sets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.voidPolynomialRobustEstimator.setEvaluations(List<PolynomialEvaluation> evaluations) Sets collection of polynomial evaluations and their corresponding point of evaluation used to determine a polynomial of required degree.voidWeightedPolynomialEstimator.setEvaluationsAndWeights(List<PolynomialEvaluation> evaluations, double[] weights) Sets collection of polynomial evaluations along with their corresponding weights.voidPolynomialRobustEstimator.setGeometricDistanceUsed(boolean geometricDistanceUsed) Specifies whether geometric distance will be used to find outliers or algebraic distance will be used instead.voidPolynomialEstimator.setListener(PolynomialEstimatorListener listener) Sets listener to be notified of events such as when estimation starts, ends or estimation progress changes.voidLMSEPolynomialEstimator.setLMSESolutionAllowed(boolean allowed) Specified if an LMSE (Least Mean Square Error) solution is allowed if more evaluations than the required minimum are provided.voidWeightedPolynomialEstimator.setMaxEvaluations(int maxEvaluations) Sets maximum number of evaluations to be weighted and taken into account.voidPolynomialRobustEstimator.setMaxIterations(int maxIterations) Sets maximum allowed number of iterations.voidPolynomialRobustEstimator.setProgressDelta(float progressDelta) Sets amount of progress variation before notifying a progress change during estimation.voidPolynomialRobustEstimator.setQualityScores(double[] qualityScores) Sets quality scores corresponding to each polynomial evaluation.voidPROMedSPolynomialRobustEstimator.setQualityScores(double[] qualityScores) Sets quality scores corresponding to each provided point.voidPROSACPolynomialRobustEstimator.setQualityScores(double[] qualityScores) Sets quality scores corresponding to each provided point.voidWeightedPolynomialEstimator.setSortWeightsEnabled(boolean sortWeights) Specifies whether weights are sorted by so that largest weighted evaluations are used first.voidLMedSPolynomialRobustEstimator.setStopThreshold(double stopThreshold) Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.voidPROMedSPolynomialRobustEstimator.setStopThreshold(double stopThreshold) Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.voidMSACPolynomialRobustEstimator.setThreshold(double threshold) Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.voidPROSACPolynomialRobustEstimator.setThreshold(double threshold) Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions.voidRANSACPolynomialRobustEstimator.setThreshold(double threshold) Sets threshold to determine whether polynomials are inliers or not when testing possible estimation solutions. -
Uses of LockedException in com.irurueta.numerical.robust
Methods in com.irurueta.numerical.robust that throw LockedExceptionModifier and TypeMethodDescriptionLMedSRobustEstimator.estimate()Robustly estimates an instance of T.MSACRobustEstimator.estimate()Robustly estimates an instance of T.PROMedSRobustEstimator.estimate()Robustly estimates an instance of T.PROSACRobustEstimator.estimate()Robustly estimates an instance of T.RANSACRobustEstimator.estimate()Robustly estimates an instance of T.abstract TRobustEstimator.estimate()Robustly estimates an instance of T.voidPROMedSRobustEstimator.setBeta(double beta) Sets beta, which is the probability that a match is declared inlier by mistake, i.e. the ratio of the "inlier" surface by the total surface.voidPROSACRobustEstimator.setBeta(double beta) Sets beta, which is the probability that a match is declared inlier by mistake, i.e. the ratio of the "inlier" surface by the total surface.voidPROSACRobustEstimator.setComputeAndKeepInliersEnabled(boolean computeAndKeepInliers) Specifies whether inliers must be computed and kept.voidRANSACRobustEstimator.setComputeAndKeepInliersEnabled(boolean computeAndKeepInliers) Specifies whether inliers must be computed and kept.voidPROSACRobustEstimator.setComputeAndKeepResidualsEnabled(boolean computeAndKeepResiduals) Specifies whether residuals must be computed and kept.voidRANSACRobustEstimator.setComputeAndKeepResidualsEnabled(boolean computeAndKeepResiduals) Specifies whether residuals must be computed and kept.voidLMedSRobustEstimator.setConfidence(double confidence) Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).voidMSACRobustEstimator.setConfidence(double confidence) Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).voidPROMedSRobustEstimator.setConfidence(double confidence) Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).voidPROSACRobustEstimator.setConfidence(double confidence) Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).voidRANSACRobustEstimator.setConfidence(double confidence) Sets amount of confidence expressed as a value between 0 and 1.0 (which is equivalent to 100%).voidPROMedSRobustEstimator.setEta0(double eta0) Sets eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).voidPROSACRobustEstimator.setEta0(double eta0) Sets eta0, which is the maximum probability that a solution with more than inliersNStar inliers in U_nStar exists and was not found after k samples (typically set to 5%).voidLMedSRobustEstimator.setInlierFactor(double inlierFactor) Sets factor to normalize or adjust threshold to determine inliers.voidPROMedSRobustEstimator.setInlierFactor(double inlierFactor) Sets factor to normalize or adjust threshold to determine inliers.voidRobustEstimator.setListener(RobustEstimatorListener<T> listener) Sets listener to be notified of events such as when estimation starts, ends or its progress significantly changes.voidLMedSRobustEstimator.setMaxIterations(int maxIterations) Sets maximum allowed number of iterations.voidMSACRobustEstimator.setMaxIterations(int maxIterations) Sets maximum allowed number of iterations.voidPROMedSRobustEstimator.setMaxIterations(int maxIterations) Sets maximum allowed number of iterations.voidPROSACRobustEstimator.setMaxIterations(int maxIterations) Sets maximum allowed number of iterations.voidRANSACRobustEstimator.setMaxIterations(int maxIterations) Sets maximum allowed number of iterations.voidPROMedSRobustEstimator.setMaxOutliersProportion(double maxOutliersProportion) Sets maximum allowed outliers proportion in the input data.voidPROSACRobustEstimator.setMaxOutliersProportion(double maxOutliersProportion) Sets maximum allowed outliers proportion in the input data.voidRobustEstimator.setProgressDelta(float progressDelta) Sets amount of progress variation before notifying a progress change during estimation.voidLMedSRobustEstimator.setStopThreshold(double stopThreshold) Sets threshold to be used to keep the algorithm iterating in case that best threshold is not small enough.voidPROMedSRobustEstimator.setStopThresholdEnabled(boolean stopThresholdEnabled) Sets boolean indicating whether the algorithm must stop prematurely when dynamically computed threshold using median of residuals has a value lower than provided threshold in listener.voidPROMedSRobustEstimator.setUseInlierThresholds(boolean useInlierThresholds) Sets flag indicating whether thresholds to determine inliers are used, or if only median of residuals is used. -
Uses of LockedException in com.irurueta.numerical.roots
Methods in com.irurueta.numerical.roots that throw LockedExceptionModifier and TypeMethodDescriptionvoidBracketedSingleRootEstimator.computeBracket()Starting at zero, this method expands the range (i.e. bracket of values) until a zero crossing is found where a root is present or until the bracket becomes unacceptably large, where an exception will be raised.voidBracketedSingleRootEstimator.computeBracket(double point) Starting from provided point, this method expands the range (i.e.voidBracketedSingleRootEstimator.computeBracket(double minEvalPoint, double maxEvalPoint) Starting from provided minimum and maximum values, this method expands the range (i.e. bracket of values) until a zero crossing is found where a root is present or until the bracket becomes unacceptably large, where an exception will be raised.voidBisectionSingleRootEstimator.estimate()Estimates a single root of the provided single dimension function contained within a given bracket of values.voidBrentSingleRootEstimator.estimate()Estimates a local root for a given single dimension function being evaluated by provided listener.voidFalsePositionSingleRootEstimator.estimate()Estimates a single root of the provided single dimension function contained within a given bracket of values.voidFirstDegreePolynomialRootsEstimator.estimate()Estimates the root of provided polynomial.voidLaguerrePolynomialRootsEstimator.estimate()Estimates the roots of provided polynomial.voidNewtonRaphsonSingleRootEstimator.estimate()Estimates a local root for a given single dimension function being evaluated by provided listener.voidRidderSingleRootEstimator.estimate()Estimates a local root for a given single dimension function being evaluated by provided listener.voidRootEstimator.estimate()Estimates the root or roots for a given function.voidSafeNewtonRaphsonSingleRootEstimator.estimate()Estimates a local root for a given single dimension function being evaluated by provided listener.voidSecantSingleRootEstimator.estimate()Estimates a local root for a given single dimension function being evaluated by provided listener.voidSecondDegreePolynomialRootsEstimator.estimate()Estimates the roots of provided polynomial.voidThirdDegreePolynomialRootsEstimator.estimate()Estimates the roots of provided polynomial.voidBracketedSingleRootEstimator.setBracket(double minEvalPoint, double maxEvalPoint) Sets the bracket of values (i.e. range of values) where the root will be searched.voidDerivativeSingleRootEstimator.setDerivativeListener(SingleDimensionFunctionEvaluatorListener derivativeListener) Sets derivative listener to evaluate a function's derivative.voidSingleRootEstimator.setListener(SingleDimensionFunctionEvaluatorListener listener) Sets listener that evaluates a single dimension function in order to find its root.voidLaguerrePolynomialRootsEstimator.setPolishRootsEnabled(boolean enable) Sets boolean indicating whether roots will be refined after an initial estimation.voidFirstDegreePolynomialRootsEstimator.setPolynomialParameters(double[] polyParams) Set array of first degree polynomial parameters.voidPolynomialRootsEstimator.setPolynomialParameters(com.irurueta.algebra.Complex[] polyParams) Sets parameters of a polynomial, taking into account that a polynomial of degree n is defined as: p(x) = a0 * x^n + a1 * x^(n - 1) + ... a(n-1) * x + an then the array of parameters is [a0, a1, ... a(n - 1), an]voidSecondDegreePolynomialRootsEstimator.setPolynomialParameters(double[] polyParams) Set array of second degree polynomial parameters.voidThirdDegreePolynomialRootsEstimator.setPolynomialParameters(double[] polyParams) Set array of third degree polynomial parameters.voidBisectionSingleRootEstimator.setTolerance(double tolerance) Sets tolerance to find a root.voidBrentSingleRootEstimator.setTolerance(double tolerance) Sets tolerance value.voidFalsePositionSingleRootEstimator.setTolerance(double tolerance) Sets tolerance to find a root.voidNewtonRaphsonSingleRootEstimator.setTolerance(double tolerance) Sets tolerance value.voidRidderSingleRootEstimator.setTolerance(double tolerance) Sets tolerance value.voidSafeNewtonRaphsonSingleRootEstimator.setTolerance(double tolerance) Sets tolerance value.voidSecantSingleRootEstimator.setTolerance(double tolerance) Sets tolerance value.