Uses of Class
com.irurueta.numerical.EvaluationException
Packages that use EvaluationException
Package
Description
This library contains packages for:
-
Uses of EvaluationException in com.irurueta.numerical
Methods in com.irurueta.numerical that throw EvaluationExceptionModifier and TypeMethodDescriptiondoubleDerivativeEstimator.derivative(double x) Computes the function derivative at provided point x.doubleSavitzkyGolayDerivativeEstimator.derivative(double x) Computes the function derivative at provided point x.doubleSymmetricDerivativeEstimator.derivative(double x) Computes the function derivative at provided point x.doubleDirectionalDerivativeEvaluator.differentiateAt(double x) Computes derivative on current direction of a function at distance x from current point and using current listener and gradient listener.doubleMultiDimensionFunctionEvaluatorListener.evaluate(double[] point) Evaluates a multi dimension function such as f([x1, x2, ..., xn]) at provided multidimensional point and returns the result as a scalar value.voidMultiVariateFunctionEvaluatorListener.evaluate(double[] point, double[] result) Evaluates a multi variate function such as f1(x1, x2, ...), f2(x1, x2, ...) at provided multidimensional point and returns the result as a vectorial valuedoubleSingleDimensionFunctionEvaluatorListener.evaluate(double point) Evaluates a single dimension function such as f(x) at provided point and returns the result.doubleDirectionalEvaluator.evaluateAt(double x) Evaluates a function using current listener at a distance x from current point using current directionvoidGradientFunctionEvaluatorListener.evaluateGradient(double[] params, double[] result) Computes/retrieves a multidimensional function's gradient.double[]GradientEstimator.gradient(double[] point) Returns the gradient of a multidimensional function at provided point.voidGradientEstimator.gradient(double[] point, double[] result) Sets estimated gradient in provided result array of a multidimensional function at provided point.voidSavitzkyGolayGradientEstimator.gradient(double[] point, double[] result) Sets estimated gradient in provided result array of a multidimensional function at provided point.voidSymmetricGradientEstimator.gradient(double[] point, double[] result) Sets estimated gradient in provided result array of a multidimensional function at provided point.com.irurueta.algebra.MatrixJacobianEstimator.jacobian(double[] point) Returns the Jacobian of a multivariate function at provided point.voidJacobianEstimator.jacobian(double[] point, com.irurueta.algebra.Matrix result) Sets estimated jacobian in provided result matrix of a multivariate function at provided point. -
Uses of EvaluationException in com.irurueta.numerical.fitting
Methods in com.irurueta.numerical.fitting that throw EvaluationExceptionModifier and TypeMethodDescriptionprivate voidLevenbergMarquardtMultiDimensionFitter.adjustCovariance()Adjusts covariance.private voidLevenbergMarquardtMultiVariateFitter.adjustCovariance()Adjusts covariance.private voidLevenbergMarquardtSingleDimensionFitter.adjustCovariance()Adjusts covariance.doubleLevenbergMarquardtMultiDimensionFunctionEvaluator.evaluate(int i, double[] point, double[] params, double[] derivatives) Evaluates a non-linear multi dimension function at provided point using provided parameters and returns its evaluation and derivatives of the function respect the function parameters.voidLevenbergMarquardtMultiVariateFunctionEvaluator.evaluate(int i, double[] point, double[] result, double[] params, com.irurueta.algebra.Matrix jacobian) Evaluates a non-linear multi variate function at provided point using provided parameters and returns its evaluation and jacobian of the function respect the function parametersdoubleLevenbergMarquardtSingleDimensionFunctionEvaluator.evaluate(int i, double point, double[] params, double[] derivatives) Evaluates a non-linear single dimension function at provided point using provided parameters and returns its evaluation and derivatives of the function respect the function parametersvoidLinearFitterMultiDimensionFunctionEvaluator.evaluate(double[] point, double[] result) Evaluates a linear multi dimension function at provided point and returns the evaluations of the basis functions at such pointvoidLinearFitterSingleDimensionFunctionEvaluator.evaluate(double point, double[] result) Evaluates a linear single dimension function at provided point and returns the evaluations of the basis functions at such pointprivate voidLevenbergMarquardtMultiDimensionFitter.mrqcof(double[] a, com.irurueta.algebra.Matrix alpha, double[] beta) Used by fit to evaluate the linearized fitting matrix alpha, and vector beta to calculate chi square.private voidLevenbergMarquardtMultiVariateFitter.mrqcof(double[] a, com.irurueta.algebra.Matrix alpha, double[] beta) Used by fit to evaluate the linearized fitting matrix alpha, and vector beta to calculate chi square.private voidLevenbergMarquardtSingleDimensionFitter.mrqcof(double[] a, com.irurueta.algebra.Matrix alpha, double[] beta) Used byLevenbergMarquardtSingleDimensionFitter.fit()to evaluate the linearized fitting matrix alpha, and vector beta to calculate chi square. -
Uses of EvaluationException in com.irurueta.numerical.integration
Methods in com.irurueta.numerical.integration that throw EvaluationExceptionModifier and TypeMethodDescriptionvoidDoubleExponentialMatrixSingleDimensionFunctionEvaluatorListener.evaluate(double x, double delta, com.irurueta.algebra.Matrix result) Evaluates a single dimension function such as f(x) at provided point and returns the result.doubleDoubleExponentialSingleDimensionFunctionEvaluatorListener.evaluate(double x, double delta) Evaluates a single dimension function such as f(x) at provided point and returns the result.voidMatrixSingleDimensionFunctionEvaluatorListener.evaluate(double point, com.irurueta.algebra.Matrix result) Evaluates a matrix function such as f(x1) at provided point and returns the result as a matrix.protected voidExponentialMidPointMatrixQuadrature.func(double x, com.irurueta.algebra.Matrix result) Evaluates function at f(-log(x))/x.protected doubleExponentialMidPointQuadrature.func(double x) Evaluates function at f(-log(x))/x.protected voidInfinityMidPointMatrixQuadrature.func(double x, com.irurueta.algebra.Matrix result) Evaluates function at 1/x.protected doubleInfinityMidPointQuadrature.func(double x) Evaluates function at 1/x.protected voidLowerSquareRootMidPointMatrixQuadrature.func(double x, com.irurueta.algebra.Matrix result) Evaluates function at 2*x*f(a0+x^2).protected doubleLowerSquareRootMidPointQuadrature.func(double x) Evaluates function at 2*x*f(a0+x^2).protected voidMidPointMatrixQuadrature.func(double x, com.irurueta.algebra.Matrix result) Evaluates matrix function at x.protected doubleMidPointQuadrature.func(double x) Evaluates function at x.protected voidUpperSquareRootMidPointMatrixQuadrature.func(double x, com.irurueta.algebra.Matrix result) Evaluates function at 2*x*f(a0+x^2).protected doubleUpperSquareRootMidPointQuadrature.func(double x) Evaluates function at 2*x*f(a0+x^2).voidDoubleExponentialRuleMatrixQuadrature.next(com.irurueta.algebra.Matrix result) Returns the value of the integral at the nth stage of refinement.doubleDoubleExponentialRuleQuadrature.next()Returns the value of the integral at the nth stage of refinement.abstract voidMatrixQuadrature.next(com.irurueta.algebra.Matrix result) Returns the value of the integral at the nth stage of refinement.voidMidPointMatrixQuadrature.next(com.irurueta.algebra.Matrix result) Returns the value of the integral at the nth stage of refinement.doubleMidPointQuadrature.next()Returns the value of the integral at the nth stage of refinement.abstract doubleQuadrature.next()Returns the value of the integral at the nth stage of refinement.voidTrapezoidalMatrixQuadrature.next(com.irurueta.algebra.Matrix result) Returns the value of the integral at the nth stage of refinement.doubleTrapezoidalQuadrature.next()Returns the value of the integral at the nth stage of refinement. -
Uses of EvaluationException in com.irurueta.numerical.optimization
Methods in com.irurueta.numerical.optimization that throw EvaluationExceptionModifier and TypeMethodDescriptionprivate doubleSimplexMultiOptimizer.amotry(com.irurueta.algebra.Matrix p, double[] y, double[] psum, int ihi, double fac, MultiDimensionFunctionEvaluatorListener listener) Internal method to move simplex around.