Class LMedSRobustKnownPositionAccelerometerCalibrator
java.lang.Object
com.irurueta.navigation.inertial.calibration.accelerometer.RobustKnownPositionAccelerometerCalibrator
com.irurueta.navigation.inertial.calibration.accelerometer.LMedSRobustKnownPositionAccelerometerCalibrator
- All Implemented Interfaces:
AccelerometerCalibrator
,AccelerometerNonLinearCalibrator
,OrderedStandardDeviationBodyKinematicsAccelerometerCalibrator
,QualityScoredAccelerometerCalibrator
,UnknownBiasAccelerometerCalibrator
,UnknownBiasNonLinearAccelerometerCalibrator
,AccelerometerBiasUncertaintySource
,AccelerometerCalibrationSource
public class LMedSRobustKnownPositionAccelerometerCalibrator
extends RobustKnownPositionAccelerometerCalibrator
Robustly estimates accelerometer biases, cross couplings and scaling factors
using a LMedS algorithm to discard outliers.
To use this calibrator at least 10 measurements taken at a single known position must be taken at 10 different unknown orientations and zero velocity when common z-axis is assumed, otherwise at least 13 measurements are required.
Measured specific force is assumed to follow the model shown below:
fmeas = ba + (I + Ma) * ftrue + wWhere: - fmeas is the measured specific force. This is a 3x1 vector. - ba is accelerometer bias. Ideally, on a perfect accelerometer, this should be a 3x1 zero vector. - I is the 3x3 identity matrix. - Ma is the 3x3 matrix containing cross-couplings and scaling factors. Ideally, on a perfect accelerometer, this should be a 3x3 zero matrix. - ftrue is ground-truth specific force. - w is measurement noise.
-
Nested Class Summary
Nested classes/interfaces inherited from class com.irurueta.navigation.inertial.calibration.accelerometer.RobustKnownPositionAccelerometerCalibrator
RobustKnownPositionAccelerometerCalibrator.PreliminaryResult
-
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final double
Default value to be used for stop threshold.static final double
Minimum allowed stop threshold value.private double
Threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.Fields inherited from class com.irurueta.navigation.inertial.calibration.accelerometer.RobustKnownPositionAccelerometerCalibrator
confidence, DEFAULT_CONFIDENCE, DEFAULT_KEEP_COVARIANCE, DEFAULT_MAX_ITERATIONS, DEFAULT_PROGRESS_DELTA, DEFAULT_REFINE_RESULT, DEFAULT_ROBUST_METHOD, DEFAULT_USE_COMMON_Z_AXIS, gravityNorm, identity, inliersData, listener, MAX_CONFIDENCE, MAX_PROGRESS_DELTA, maxIterations, measurements, MIN_CONFIDENCE, MIN_ITERATIONS, MIN_PROGRESS_DELTA, MINIMUM_MEASUREMENTS_COMMON_Z_AXIS, MINIMUM_MEASUREMENTS_GENERAL, preliminarySubsetSize, progressDelta, refineResult, running, tmp1, tmp2, tmp3, tmp4
-
Constructor Summary
ConstructorsConstructorDescriptionConstructor.LMedSRobustKnownPositionAccelerometerCalibrator
(boolean commonAxisUsed) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(double[] initialBias) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.algebra.Matrix initialBias) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.algebra.Matrix initialBias, com.irurueta.algebra.Matrix initialMa) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, double[] initialBias) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, double[] initialBias, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, com.irurueta.algebra.Matrix initialBias) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, com.irurueta.algebra.Matrix initialBias, com.irurueta.algebra.Matrix initialMa) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, com.irurueta.algebra.Matrix initialBias, com.irurueta.algebra.Matrix initialMa, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, com.irurueta.algebra.Matrix initialBias, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, double[] initialBias) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, double[] initialBias, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, com.irurueta.algebra.Matrix initialBias) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, com.irurueta.algebra.Matrix initialBias, com.irurueta.algebra.Matrix initialMa) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, com.irurueta.algebra.Matrix initialBias, com.irurueta.algebra.Matrix initialMa, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, com.irurueta.algebra.Matrix initialBias, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.ECEFPosition position, List<StandardDeviationBodyKinematics> measurements, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, double[] initialBias) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, double[] initialBias, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, com.irurueta.algebra.Matrix initialBias) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, com.irurueta.algebra.Matrix initialBias, com.irurueta.algebra.Matrix initialMa) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, com.irurueta.algebra.Matrix initialBias, com.irurueta.algebra.Matrix initialMa, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, com.irurueta.algebra.Matrix initialBias, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, boolean commonAxisUsed, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, double[] initialBias) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, double[] initialBias, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, com.irurueta.algebra.Matrix initialBias) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, com.irurueta.algebra.Matrix initialBias, com.irurueta.algebra.Matrix initialMa) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, com.irurueta.algebra.Matrix initialBias, com.irurueta.algebra.Matrix initialMa, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, com.irurueta.algebra.Matrix initialBias, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(com.irurueta.navigation.frames.NEDPosition position, List<StandardDeviationBodyKinematics> measurements, RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.LMedSRobustKnownPositionAccelerometerCalibrator
(RobustKnownPositionAccelerometerCalibratorListener listener) Constructor.Constructor. -
Method Summary
Modifier and TypeMethodDescriptionvoid
Estimates accelerometer calibration parameters containing bias, scale factors and cross-coupling errors.com.irurueta.numerical.robust.RobustEstimatorMethod
Returns method being used for robust estimation.double
Returns threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.boolean
Indicates whether this calibrator requires quality scores for each measurement or not.void
setStopThreshold
(double stopThreshold) Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough.Methods inherited from class com.irurueta.navigation.inertial.calibration.accelerometer.RobustKnownPositionAccelerometerCalibrator
attemptRefine, computeError, computeGravityNorm, computePreliminarySolutions, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, create, getConfidence, getEcefPosition, getEstimatedBiasAsTriad, getEstimatedBiasAsTriad, getEstimatedBiases, getEstimatedBiases, getEstimatedBiasesAsMatrix, getEstimatedBiasesAsMatrix, getEstimatedBiasFx, getEstimatedBiasFxAsAcceleration, getEstimatedBiasFxAsAcceleration, getEstimatedBiasFxStandardDeviation, getEstimatedBiasFxStandardDeviationAsAcceleration, getEstimatedBiasFxStandardDeviationAsAcceleration, getEstimatedBiasFxVariance, getEstimatedBiasFy, getEstimatedBiasFyAsAcceleration, getEstimatedBiasFyAsAcceleration, getEstimatedBiasFyStandardDeviation, getEstimatedBiasFyStandardDeviationAsAcceleration, getEstimatedBiasFyStandardDeviationAsAcceleration, getEstimatedBiasFyVariance, getEstimatedBiasFz, getEstimatedBiasFzAsAcceleration, getEstimatedBiasFzAsAcceleration, getEstimatedBiasFzStandardDeviation, getEstimatedBiasFzStandardDeviationAsAcceleration, getEstimatedBiasFzStandardDeviationAsAcceleration, getEstimatedBiasFzVariance, getEstimatedBiasStandardDeviation, getEstimatedBiasStandardDeviation, getEstimatedBiasStandardDeviationAverage, getEstimatedBiasStandardDeviationAverageAsAcceleration, getEstimatedBiasStandardDeviationAverageAsAcceleration, getEstimatedBiasStandardDeviationNorm, getEstimatedBiasStandardDeviationNormAsAcceleration, getEstimatedBiasStandardDeviationNormAsAcceleration, getEstimatedChiSq, getEstimatedCovariance, getEstimatedMa, getEstimatedMse, getEstimatedMxy, getEstimatedMxz, getEstimatedMyx, getEstimatedMyz, getEstimatedMzx, getEstimatedMzy, getEstimatedSx, getEstimatedSy, getEstimatedSz, getInitialBias, getInitialBias, getInitialBiasAsMatrix, getInitialBiasAsMatrix, getInitialBiasAsTriad, getInitialBiasAsTriad, getInitialBiasX, getInitialBiasXAsAcceleration, getInitialBiasXAsAcceleration, getInitialBiasY, getInitialBiasYAsAcceleration, getInitialBiasYAsAcceleration, getInitialBiasZ, getInitialBiasZAsAcceleration, getInitialBiasZAsAcceleration, getInitialMa, getInitialMa, getInitialMxy, getInitialMxz, getInitialMyx, getInitialMyz, getInitialMzx, getInitialMzy, getInitialSx, getInitialSy, getInitialSz, getInliersData, getListener, getMaxIterations, getMeasurements, getMeasurementType, getMinimumRequiredMeasurements, getNedPosition, getNedPosition, getPreliminarySubsetSize, getProgressDelta, getQualityScores, isCommonAxisUsed, isCovarianceKept, isOrderedMeasurementsRequired, isReady, isResultRefined, isRunning, setCommonAxisUsed, setConfidence, setCovarianceKept, setInitialBias, setInitialBias, setInitialBias, setInitialBias, setInitialBias, setInitialBiasX, setInitialBiasX, setInitialBiasY, setInitialBiasY, setInitialBiasZ, setInitialBiasZ, setInitialCrossCouplingErrors, setInitialMa, setInitialMxy, setInitialMxz, setInitialMyx, setInitialMyz, setInitialMzx, setInitialMzy, setInitialScalingFactors, setInitialScalingFactorsAndCrossCouplingErrors, setInitialSx, setInitialSy, setInitialSz, setListener, setMaxIterations, setMeasurements, setPosition, setPosition, setPreliminarySubsetSize, setProgressDelta, setQualityScores, setResultRefined
-
Field Details
-
DEFAULT_STOP_THRESHOLD
public static final double DEFAULT_STOP_THRESHOLDDefault value to be used for stop threshold. Stop threshold can be used to avoid keeping the algorithm unnecessarily iterating in case that best estimated threshold using median of residuals is not small enough. Once a solution is found that generates a threshold below this value, the algorithm will stop. The stop threshold can be used to prevent the LMedS algorithm iterating too many times in cases where samples have a very similar accuracy. For instance, in cases where proportion of outliers is very small (close to 0%), and samples are very accurate (i.e. 1e-6), the algorithm would iterate for a long time trying to find the best solution when indeed there is no need to do that if a reasonable threshold has already been reached. Because of this behaviour the stop threshold can be set to a value much lower than the one typically used in RANSAC, and yet the algorithm could still produce even smaller thresholds in estimated results.- See Also:
-
MIN_STOP_THRESHOLD
public static final double MIN_STOP_THRESHOLDMinimum allowed stop threshold value.- See Also:
-
stopThreshold
private double stopThresholdThreshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough. Once a solution is found that generates a threshold below this value, the algorithm will stop. The stop threshold can be used to prevent the LMedS algorithm iterating too many times in cases where samples have a very similar accuracy. For instance, in cases where proportion of outliers is very small (close to 0%), and samples are very accurate (i.e. 1e-6), the algorithm would iterate for a long time trying to find the best solution when indeed there is no need to do that if a reasonable threshold has already been reached. Because of this behaviour the stop threshold can be set to a value much lower than the one typically used in RANSAC, and yet the algorithm could still produce even smaller thresholds in estimated results.
-
-
Constructor Details
-
LMedSRobustKnownPositionAccelerometerCalibrator
public LMedSRobustKnownPositionAccelerometerCalibrator()Constructor. -
LMedSRobustKnownPositionAccelerometerCalibrator
public LMedSRobustKnownPositionAccelerometerCalibrator(List<StandardDeviationBodyKinematics> measurements) Constructor.- Parameters:
measurements
- list of body kinematics measurements taken at a given position with different unknown orientations and containing the standard deviations of accelerometer and gyroscope measurements.
-
LMedSRobustKnownPositionAccelerometerCalibrator
public LMedSRobustKnownPositionAccelerometerCalibrator(boolean commonAxisUsed) Constructor.- Parameters:
commonAxisUsed
- indicates whether z-axis is assumed to be common for accelerometer and gyroscope.
-
LMedSRobustKnownPositionAccelerometerCalibrator
public LMedSRobustKnownPositionAccelerometerCalibrator(double[] initialBias) Constructor.- Parameters:
initialBias
- initial accelerometer bias to be used to find a solution. This must have length 3 and is expressed in meters per squared second (m/s^2).- Throws:
IllegalArgumentException
- if provided bias array does not have length 3.
-
LMedSRobustKnownPositionAccelerometerCalibrator
public LMedSRobustKnownPositionAccelerometerCalibrator(com.irurueta.algebra.Matrix initialBias) Constructor.- Parameters:
initialBias
- initial bias to find a solution.- Throws:
IllegalArgumentException
- if provided bias matrix is not 3x1.
-
LMedSRobustKnownPositionAccelerometerCalibrator
public LMedSRobustKnownPositionAccelerometerCalibrator(com.irurueta.algebra.Matrix initialBias, com.irurueta.algebra.Matrix initialMa) Constructor.- Parameters:
initialBias
- initial bias to find a solution.initialMa
- initial scale factors and cross coupling errors matrix.- Throws:
IllegalArgumentException
- if either provided bias matrix is not 3x1 or scaling and coupling error matrix is not 3x3.
-
-
Method Details
-
getStopThreshold
public double getStopThreshold()Returns threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough. Once a solution is found that generates a threshold below this value, the algorithm will stop. The stop threshold can be used to prevent the LMedS algorithm to iterate too many times in cases where samples have a very similar accuracy. For instance, in cases where proportion of outliers is very small (close to 0%), and samples are very accurate (i.e. 1e-6), the algorithm would iterate for a long time trying to find the best solution when indeed there is no need to do that if a reasonable threshold has already been reached. Because of this behaviour the stop threshold can be set to a value much lower than the one typically used in RANSAC, and yet the algorithm could still produce even smaller thresholds in estimated results.- Returns:
- stop threshold to stop the algorithm prematurely when a certain accuracy has been reached.
-
setStopThreshold
public void setStopThreshold(double stopThreshold) throws com.irurueta.navigation.LockedException Sets threshold to be used to keep the algorithm iterating in case that best estimated threshold using median of residuals is not small enough. Once a solution is found that generates a threshold below this value, the algorithm will stop. The stop threshold can be used to prevent the LMedS algorithm to iterate too many times in cases where samples have a very similar accuracy. For instance, in cases where proportion of outliers is very small (close to 0%), and samples are very accurate (i.e. 1e-6), the algorithm would iterate for a long time trying to find the best solution when indeed there is no need to do that if a reasonable threshold has already been reached. Because of this behaviour the stop threshold can be set to a value much lower than the one typically used in RANSAC, and yet the algorithm could still produce even smaller thresholds in estimated results.- Parameters:
stopThreshold
- stop threshold to stop the algorithm prematurely when a certain accuracy has been reached.- Throws:
IllegalArgumentException
- if provided value is zero or negative.com.irurueta.navigation.LockedException
- if calibrator is currently running.
-
calibrate
public void calibrate() throws com.irurueta.navigation.LockedException, com.irurueta.navigation.NotReadyException, CalibrationExceptionEstimates accelerometer calibration parameters containing bias, scale factors and cross-coupling errors.- Throws:
com.irurueta.navigation.LockedException
- if calibrator is currently running.com.irurueta.navigation.NotReadyException
- if calibrator is not ready.CalibrationException
- if estimation fails for numerical reasons.
-
getMethod
public com.irurueta.numerical.robust.RobustEstimatorMethod getMethod()Returns method being used for robust estimation.- Specified by:
getMethod
in classRobustKnownPositionAccelerometerCalibrator
- Returns:
- method being used for robust estimation.
-
isQualityScoresRequired
public boolean isQualityScoresRequired()Indicates whether this calibrator requires quality scores for each measurement or not.- Returns:
- true if quality scores are required, false otherwise.
-