Uses of Class
com.irurueta.algebra.WrongSizeException

Packages that use WrongSizeException
Package
Description
This package contains classes related to algebra, such as Matrix class to contains matrices data and simple operations or Complex to handle computations with Complex numbers.
 
  • Uses of WrongSizeException in com.irurueta.algebra

    Modifier and Type
    Method
    Description
    void
    Matrix.add(Matrix other)
    Adds provided matrix to this instance.
    void
    Matrix.add(Matrix other, Matrix result)
    Adds another matrix to this matrix instance and stores the result in provided result matrix.
    Matrix.addAndReturnNew(Matrix other)
    Adds provided matrix to this instance and returns the result as a new matrix instance.
    static Matrix
    Matrix.createWithGaussianRandomValues(int rows, int columns, double mean, double standardDeviation)
    Creates new matrix instance using provided size and containing gaussian/normal distributed random values with provided median and standard deviation.
    static Matrix
    Matrix.createWithGaussianRandomValues(int rows, int columns, double mean, double standardDeviation, Random random)
    Creates new matrix instance using provided size and containing gaussian/normal distributed random values with provided median and standard deviation and using provided random generator
    static Matrix
    Matrix.createWithUniformRandomValues(int rows, int columns, double minValue, double maxValue)
    Creates new matrix instance using provided size and containing uniformly distributed random values with provided range.
    static Matrix
    Matrix.createWithUniformRandomValues(int rows, int columns, double minValue, double maxValue, Random random)
    Creates new matrix instance using provided size and containing uniformly distributed random values with provided range and using provided random generator
    static double[]
    Utils.crossProduct(double[] v1, double[] v2)
    Computes the cross product of two vectors of length 3 The cross product of two vectors a and b is denoted as 'axb' or 'a^b', resulting in a perpendicular vector to both a and b vectors.
    static void
    Utils.crossProduct(double[] v1, double[] v2, double[] result)
    Computes the cross product of two vectors of length 3 The cross product of two vectors a and b is denoted as 'axb' or 'a^b', resulting in a perpendicular vector to both a and b vectors.
    static void
    Utils.crossProduct(double[] v1, double[] v2, double[] result, Matrix jacobian1, Matrix jacobian2)
    Computes the cross product of two vectors of length 3 The cross product of two vectors a and b is denoted as 'axb' or 'a^b', resulting in a perpendicular vector to both a and b vectors.
    static double[]
    Utils.crossProduct(double[] v1, double[] v2, Matrix jacobian1, Matrix jacobian2)
    Computes the cross product of two vectors of length 3 The cross product of two vectors a and b is denoted as 'axb' or 'a^b', resulting in a perpendicular vector to both a and b vectors.
    static Matrix
    Utils.crossProduct(double[] v, Matrix m)
    Computes the cross product of one vector of length 3 and N vectors of length 3.
    static void
    Utils.crossProduct(double[] v, Matrix m, Matrix result)
    Computes the cross product of one vector of length 3 and N vectors of length 3.
    static double
    Utils.det(Matrix m)
    Computes determinant of provided matrix.
    double
    LUDecomposer.determinant()
    Returns determinant of provided input matrix using LU decomposition as means to obtain it.
    static double
    Utils.dotProduct(Matrix firstOperand, Matrix secondOperand)
    Computes the dot product of provided matrices, as the sum of the product of the elements on both matrices, assuming that both represent column vectors.
    static double
    Utils.dotProduct(Matrix firstOperand, Matrix secondOperand, Matrix jacobianFirst, Matrix jacobianSecond)
    Computes the dot product of provided matrices, as the sum of the product of the elements on both matrices, assuming that both represent column vectors.
    void
    Computes element by element product (i.e.
    void
    Matrix.elementByElementProduct(Matrix other, Matrix result)
    Computes element by element product (i.e.
    Computes element by element product (i.e.
    void
    Matrix.fromArray(double[] array)
    Copies elements of array into this instance using column order.
    void
    Matrix.fromArray(double[] array, boolean isColumnOrder)
    Copies elements of array into this instance using provided order.
    double
    NormComputer.getNorm(double[] array, Matrix jacobian)
    Computes norm of provided array and stores the jacobian into provided instance.
    EconomyQRDecomposer.getQ()
    Return the economy-sized orthogonal factor matrix.
    void
    EconomyQRDecomposer.getQ(Matrix q)
    Computes the economy-sized orthogonal factor matrix and stores it into provided matrix.
    void
    Matrix.getSubmatrixAsArray(int topLeftRow, int topLeftColumn, int bottomRightRow, int bottomRightColumn, boolean isColumnOrder, double[] array)
    Retrieves a sub-matrix of current matrix instance as an array of values using provided column order and storing the result in provided array.
    void
    Matrix.getSubmatrixAsArray(int topLeftRow, int topLeftColumn, int bottomRightRow, int bottomRightColumn, double[] array)
    Retrieves a sub-matrix of current matrix instance as an array of values using column order and storing the result in provided array.
    void
    SingularValueDecomposer.getW(Matrix m)
    Copies diagonal matrix into provided instance containing all singular values on its diagonal after Singular Value matrix decomposition, which consists on decomposing a matrix using the following expression: A = U * S * V'.
    static Matrix
    Matrix.identity(int rows, int columns)
    Creates and returns a new matrix instance having all the elements on the diagonal equal to one and the remaining ones equal to zero.
    private void
    Matrix.internalResize(int rows, int columns)
    Method used internally to remove matrix contents and resizing it.
    private static void
    Utils.internalSkewMatrix(Matrix m, Matrix result, boolean columnwise)
    Internal method to compute skew matrix
    static void
    GaussJordanElimination.inverse(Matrix a)
    Computes inverse of matrix "a".
    static Matrix
    Utils.inverse(double[] array)
    Computes array pseudo-inverse considering it as a column matrix.
    static void
    Utils.inverse(double[] array, Matrix result)
    Computes array pseudo-inverse considering it as a column matrix and stores the result in provided result matrix.
    static Matrix
    Utils.inverse(Matrix m)
    Computes matrix inverse if provided matrix is squared, or pseudo-inverse otherwise.
    static void
    Utils.inverse(Matrix m, Matrix result)
    Computes matrix inverse if provided matrix is squared, or pseudo-inverse otherwise and stores the result in provided result matrix.
    boolean
    EconomyQRDecomposer.isFullRank()
    Returns boolean indicating whether provided input matrix has full rank or not.
    boolean
    EconomyQRDecomposer.isFullRank(double roundingError)
    Returns boolean indicating whether provided input matrix has full rank or not.
    boolean
    LUDecomposer.isSingular()
    Return boolean indicating whether provided input matrix is singular or not after computing LU decomposition.
    boolean
    LUDecomposer.isSingular(double roundingError)
    Return boolean indicating whether provided input matrix is singular or not after computing LU decomposition.
    void
    Matrix.multiply(Matrix other)
    Multiplies this matrix with provided matrix.
    void
    Matrix.multiply(Matrix other, Matrix result)
    Multiplies another matrix to this matrix instance and stores the result in provided result matrix.
    Multiplies this matrix with provided matrix and returns the result as a new instance.
    static double
    FrobeniusNormComputer.norm(double[] array, Matrix jacobian)
    Computes norm of provided array and stores the jacobian into provided instance.
    static double
    InfinityNormComputer.norm(double[] array, Matrix jacobian)
    Computes norm of provided array and stores the jacobian into provided instance.
    static double
    OneNormComputer.norm(double[] array, Matrix jacobian)
    Computes norm of provided array and stores the jacobian into provided instance.
    static void
    GaussJordanElimination.process(Matrix a, double[] b)
    Computes Gauss-Jordan elimination by attempting to solve linear system of equations a * x = b.
    static void
    GaussJordanElimination.process(Matrix a, Matrix b)
    Computes Gauss-Jordan elimination by attempting to solve linear system of equations a * x = b.
    void
    Matrix.reset(int rows, int columns, double initValue)
    Resets current instance by removing its contents, resizing it to provided size and setting all its elements to provided value.
    void
    Matrix.resize(int rows, int columns)
    Resizes current instance by removing its contents and resizing it to provided size.
    static Matrix
    Utils.skewMatrix(double[] array)
    Computes the skew-symmetric matrix of provided vector of length 3.
    static void
    Utils.skewMatrix(double[] array, Matrix result)
    Computes the skew-symmetric matrix of provided vector of length 3 and stores the result in provided matrix.
    static void
    Utils.skewMatrix(double[] array, Matrix result, Matrix jacobian)
    Computes the skew-symmetric matrix of provided vector of length 3 and stores the result in provided matrix.
    static Matrix
    Utils.skewMatrix(Matrix m)
    Computes the skew-symmetric matrix of provided matrix of size 3x1 or 13.
    static void
    Utils.skewMatrix(Matrix m, Matrix result)
    Computes the skew-symmetric matrix of provided matrix of size 3x1 or 13.
    static void
    Utils.skewMatrix(Matrix m, Matrix result, Matrix jacobian)
    Computes the skew-symmetric matrix of provided matrix of size 3x1 or 13.
    CholeskyDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B.
    void
    CholeskyDecomposer.solve(Matrix b, Matrix result)
    Solves a linear system of equations of the following form: A * X = B.
    EconomyQRDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B, where A is the input matrix provided for QR decomposition, X is the solution to the system of equations, and B is the parameters vector/matrix.
    EconomyQRDecomposer.solve(Matrix b, double roundingError)
    Solves a linear system of equations of the following form: A * X = B, where A is the input matrix provided for QR decomposition, X is the solution to the system of equations, and B is the parameters vector/matrix.
    void
    EconomyQRDecomposer.solve(Matrix b, double roundingError, Matrix result)
    Solves a linear system of equations of the following form: A * X = B, where A is the input matrix provided for QR decomposition, X is the solution to the system of equations, and B is the parameters vector/matrix.
    void
    EconomyQRDecomposer.solve(Matrix b, Matrix result)
    Solves a linear system of equations of the following form: A * X = B, where A is the input matrix provided for QR decomposition, X is the solution to the system of equations, and B is the parameters vector/matrix.
    LUDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B.
    LUDecomposer.solve(Matrix b, double roundingError)
    Solves a linear system of equations of the following form: A * X = B.
    void
    LUDecomposer.solve(Matrix b, double roundingError, Matrix result)
    Solves a linear system of equations of the following form: A * X = B.
    void
    LUDecomposer.solve(Matrix b, Matrix result)
    Solves a linear system of equations of the following form: A * X = B.
    QRDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B.
    QRDecomposer.solve(Matrix b, double roundingError)
    Solves a linear system of equations of the following form: A * X = B.
    void
    QRDecomposer.solve(Matrix b, double roundingError, Matrix result)
    Solves a linear system of equations of the following form: A * X = B.
    void
    QRDecomposer.solve(Matrix b, Matrix result)
    Solves a linear system of equations of the following form: A * X = B.
    double[]
    SingularValueDecomposer.solve(double[] b)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    double[]
    SingularValueDecomposer.solve(double[] b, double singularValueThreshold)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    void
    SingularValueDecomposer.solve(double[] b, double[] result)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    void
    SingularValueDecomposer.solve(double[] b, double singularValueThreshold, double[] result)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    SingularValueDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    SingularValueDecomposer.solve(Matrix b, double singularValueThreshold)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    void
    SingularValueDecomposer.solve(Matrix b, double singularValueThreshold, Matrix result)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    void
    SingularValueDecomposer.solve(Matrix b, Matrix result)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    static Matrix
    Utils.solve(Matrix m, Matrix b)
    Solves a linear system of equations of the form: m * x = b.
    static void
    Utils.solve(Matrix m, Matrix b, Matrix result)
    Solves a linear system of equations of the form: m * x = b.
    void
    Matrix.subtract(Matrix other)
    Subtracts provided matrix from this instance.
    void
    Matrix.subtract(Matrix other, Matrix result)
    Subtracts another matrix from this matrix instance and stores the result in provided result matrix.
    Subtracts provided matrix from this instance and returns the result as a new matrix instance.
    void
    Matrix.symmetrize()
    Symmetrizes this instance and updates it with computed value.
    void
    Matrix.symmetrize(Matrix result)
    Symmetrizes this instance and stores the result into provided instance.
    Symmetrizes this instance and returns the result as a new matrix instance.
    void
    Matrix.toArray(double[] result)
    Copies the contents of the matrix to an array of values using column order.
    void
    Matrix.toArray(double[] result, boolean isColumnOrder)
    Copies the contents of the matrix to an array of values using provided order to pick elements.
    Constructors in com.irurueta.algebra that throw WrongSizeException
    Modifier
    Constructor
    Description
     
    Matrix(int rows, int columns)
    Constructor of this class.
  • Uses of WrongSizeException in com.irurueta.statistics

    Modifier and Type
    Method
    Description
    MultivariateNormalDist.propagate(MultivariateNormalDist.JacobianEvaluator evaluator, double[] mean, Matrix covariance)
    Evaluates the Jacobian and a multivariate function at a certain mean point and computes the non-linear propagation of Gaussian uncertainty through such function at such point.
    static void
    MultivariateNormalDist.propagate(MultivariateNormalDist.JacobianEvaluator evaluator, double[] mean, Matrix covariance, MultivariateNormalDist result)
    Evaluates the Jacobian and a multivariate function at a certain mean point and computes the non-linear propagation of Gaussian uncertainty through such function at such point.
    Evaluates the Jacobian and a multivariate function at a certain mean point and computes the non-linear propagation of Gaussian uncertainty through such function at such point.
    static void
    Evaluates the Jacobian and a multivariate function at a certain mean point and computes the non-linear propagation of Gaussian uncertainty through such function at such point.
    Evaluates the Jacobian and a multivariate function at the mean point of this distribution and computes the non-linear propagation of Gaussian uncertainty through such function at such point.
    void
    Evaluates the Jacobian and a multivariate function at the mean point of this distribution and computes the non-linear propagation of Gaussian uncertainty through such function at such point.
    final void
    MultivariateGaussianRandomizer.setMeanAndCovariance(double[] mean, Matrix covariance)
    Sets mean and covariance to generate multivariate Gaussian random values.
    Constructors in com.irurueta.statistics that throw WrongSizeException
    Modifier
    Constructor
    Description
     
    MultivariateGaussianRandomizer(double[] mean, Matrix covariance)
    Constructor.
     
    MultivariateGaussianRandomizer(Random internalRandom, double[] mean, Matrix covariance)
    Constructor.