Uses of Class
com.irurueta.algebra.Matrix

Packages that use Matrix
Package
Description
This package contains classes related to algebra, such as Matrix class to contains matrices data and simple operations or Complex to handle computations with Complex numbers.
 
  • Uses of Matrix in com.irurueta.algebra

    Fields in com.irurueta.algebra declared as Matrix
    Modifier and Type
    Field
    Description
    protected Matrix
    Decomposer.inputMatrix
    Reference to input matrix to be decomposed.
    private Matrix
    LUDecomposer.lu
    Internal matrix containing results of decomposition.
    private Matrix
    QRDecomposer.q
    Internal matrix containing Q factor.
    private Matrix
    EconomyQRDecomposer.qr
    Internal matrix containing results of decomposition.
    private Matrix
    CholeskyDecomposer.r
    Internal storage of Cholesky decomposition for provided input matrix.
    private Matrix
    QRDecomposer.r
    Internal matrix containing R factor.
    private Matrix
    SingularValueDecomposer.u
    Internal storage of U.
    private Matrix
    SingularValueDecomposer.v
    Internal storage of V.
    Methods in com.irurueta.algebra that return Matrix
    Modifier and Type
    Method
    Description
    Matrix.addAndReturnNew(Matrix other)
    Adds provided matrix to this instance and returns the result as a new matrix instance.
    Matrix.clone()
    Returns a new matrix instance containing the same data as this instance.
    static Matrix
    Matrix.createWithGaussianRandomValues(int rows, int columns, double mean, double standardDeviation)
    Creates new matrix instance using provided size and containing gaussian/normal distributed random values with provided median and standard deviation.
    static Matrix
    Matrix.createWithGaussianRandomValues(int rows, int columns, double mean, double standardDeviation, Random random)
    Creates new matrix instance using provided size and containing gaussian/normal distributed random values with provided median and standard deviation and using provided random generator
    static Matrix
    Matrix.createWithUniformRandomValues(int rows, int columns, double minValue, double maxValue)
    Creates new matrix instance using provided size and containing uniformly distributed random values with provided range.
    static Matrix
    Matrix.createWithUniformRandomValues(int rows, int columns, double minValue, double maxValue, Random random)
    Creates new matrix instance using provided size and containing uniformly distributed random values with provided range and using provided random generator
    static Matrix
    Utils.crossProduct(double[] v, Matrix m)
    Computes the cross product of one vector of length 3 and N vectors of length 3.
    static Matrix
    Matrix.diagonal(double[] diagonal)
    Creates a diagonal matrix having all the elements in provided array in its diagonal and the remaining elements equal to zero.
    Computes element by element product (i.e.
    EconomyQRDecomposer.getH()
    Returns the Householder vectors.
    Decomposer.getInputMatrix()
    Returns a reference to input matrix to be decomposed.
    CholeskyDecomposer.getL()
    Returns Cholesky matrix factor corresponding to a Lower triangular matrix following this expression: A = L * L'.
    LUDecomposer.getL()
    Returns a new matrix instance containing the pivot corrected Lower triangular matrix resulting from LU decomposition for provided input matrix.
    SingularValueDecomposer.getNullspace()
    Returns matrix containing null-space of provided input matrix, which spans a subspace of dimension equal to the nullity of input matrix.
    SingularValueDecomposer.getNullspace(double singularValueThreshold)
    Returns matrix containing null-space of provided input matrix, which spans a subspace of dimension equal to the nullity of input matrix.
    LUDecomposer.getPivottedL()
    Returns a new matrix instance containing the Lower triangular matrix resulting from LU decomposition before correcting any possible pivots.
    EconomyQRDecomposer.getQ()
    Return the economy-sized orthogonal factor matrix.
    QRDecomposer.getQ()
    Returns the economy-sized orthogonal factor matrix.
    RQDecomposer.getQ()
    Returns the economy-sized orthogonal factor matrix.
    CholeskyDecomposer.getR()
    Returns Cholesky matrix factor corresponding to an upper triangular matrix following this expression: A = R' * R.
    EconomyQRDecomposer.getR()
    Return upper triangular factor matrix.
    QRDecomposer.getR()
    Returns upper triangular factor matrix.
    RQDecomposer.getR()
    Returns upper triangular factor matrix.
    SingularValueDecomposer.getRange()
    Return matrix containing Range space of provided input matrix, which spans a subspace of dimension equal to the rank of input matrix.
    SingularValueDecomposer.getRange(double singularValueThreshold)
    Returns matrix containing Range space of provided input matrix, which spans a subspace of dimension equal to the rank of input matrix.
    Matrix.getSubmatrix(int topLeftRow, int topLeftColumn, int bottomRightRow, int bottomRightColumn)
    Obtains a sub-matrix of current matrix instance.
    LUDecomposer.getU()
    Returns a new matrix instance containing the Upper triangular matrix resulting from LU decomposition for provided input matrix.
    SingularValueDecomposer.getU()
    Returns a new matrix instance containing the left singular vector (U factor) from Singular Value matrix decomposition, which consists on decomposing a matrix using the following expression: A = U * S * V'.
    SingularValueDecomposer.getV()
    Returns a new matrix instance containing the right singular vectors (V factor) from Singular Value matrix decomposition, which consists on decomposing a matrix using the following expression: A = U * S * V', Where A is provided input matrix of size m-by-n and V' denotes the transpose/conjugate of V, which is an n-by-n unary matrix for m < n.
    SingularValueDecomposer.getW()
    Returns a new diagonal matrix instance containing all singular values on its diagonal after Singular Value matrix decomposition, which consists on decomposing a matrix using the following expression: A = U * S * V'.
    static Matrix
    Matrix.identity(int rows, int columns)
    Creates and returns a new matrix instance having all the elements on the diagonal equal to one and the remaining ones equal to zero.
    static Matrix
    Utils.inverse(double[] array)
    Computes array pseudo-inverse considering it as a column matrix.
    static Matrix
    Utils.inverse(Matrix m)
    Computes matrix inverse if provided matrix is squared, or pseudo-inverse otherwise.
    Multiplies this matrix with provided matrix and returns the result as a new instance.
    Matrix.multiplyByScalarAndReturnNew(double scalar)
    Computes product by scalar of this instance multiplying all its elements by provided scalar value and returning the result as a new instance.
    Computes the Kronecker product with provided matrix and returns the result as a new instance.
    static Matrix
    Matrix.newFromArray(double[] array)
    Instantiates new matrix from array using DEFAULT_USE_COLUMN_ORDER
    static Matrix
    Matrix.newFromArray(double[] array, boolean isColumnOrder)
    Instantiates new matrix from array using either column or row order
    static Matrix
    Utils.pseudoInverse(double[] array)
    Computes Moore-Penrose pseudo-inverse of provided array considering it as a column matrix.
    static Matrix
    Computes Moore-Penrose pseudo-inverse of provided matrix.
    static Matrix
    Utils.schurcAndReturnNew(Matrix m, int pos)
    Computes the Schur complement of the sub-matrix A within a symmetric matrix, returning always the full Schur complement.
    static Matrix
    Utils.schurcAndReturnNew(Matrix m, int pos, boolean fromStart)
    Computes the Schur complement of a symmetric matrix, returning always the full Schur complement.
    static Matrix
    Utils.schurcAndReturnNew(Matrix m, int pos, boolean fromStart, boolean sqrt)
    Computes the Schur complement of a symmetric matrix.
    static Matrix
    Utils.schurcAndReturnNew(Matrix m, int pos, boolean fromStart, boolean sqrt, Matrix iA)
    Computes the Schur complement of a symmetric matrix.
    static Matrix
    Utils.schurcAndReturnNew(Matrix m, int pos, boolean fromStart, Matrix iA)
    Computes the Schur complement of a symmetric matrix, returning always the full Schur complement.
    static Matrix
    Utils.schurcAndReturnNew(Matrix m, int pos, Matrix iA)
    Computes the Schur complement of the sub-matrix A within a symmetric matrix, returning always the full Schur complement.
    static Matrix
    Utils.skewMatrix(double[] array)
    Computes the skew-symmetric matrix of provided vector of length 3.
    static Matrix
    Utils.skewMatrix(Matrix m)
    Computes the skew-symmetric matrix of provided matrix of size 3x1 or 13.
    CholeskyDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B.
    EconomyQRDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B, where A is the input matrix provided for QR decomposition, X is the solution to the system of equations, and B is the parameters vector/matrix.
    EconomyQRDecomposer.solve(Matrix b, double roundingError)
    Solves a linear system of equations of the following form: A * X = B, where A is the input matrix provided for QR decomposition, X is the solution to the system of equations, and B is the parameters vector/matrix.
    LUDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B.
    LUDecomposer.solve(Matrix b, double roundingError)
    Solves a linear system of equations of the following form: A * X = B.
    QRDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B.
    QRDecomposer.solve(Matrix b, double roundingError)
    Solves a linear system of equations of the following form: A * X = B.
    SingularValueDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    SingularValueDecomposer.solve(Matrix b, double singularValueThreshold)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    static Matrix
    Utils.solve(Matrix m, Matrix b)
    Solves a linear system of equations of the form: m * x = b.
    Subtracts provided matrix from this instance and returns the result as a new matrix instance.
    Symmetrizes this instance and returns the result as a new matrix instance.
    Transposes current matrix and returns result as a new instance.
    Methods in com.irurueta.algebra with parameters of type Matrix
    Modifier and Type
    Method
    Description
    void
    Matrix.add(Matrix other)
    Adds provided matrix to this instance.
    void
    Matrix.add(Matrix other, Matrix result)
    Adds another matrix to this matrix instance and stores the result in provided result matrix.
    Matrix.addAndReturnNew(Matrix other)
    Adds provided matrix to this instance and returns the result as a new matrix instance.
    static double
    Utils.cond(Matrix m)
    Computes condition number of provided matrix.
    void
    Matrix.copyFrom(Matrix input)
    Copies the contents of provided matrix into this instance.
    void
    Matrix.copyTo(Matrix output)
    Copies this matrix data into provided matrix.
    static void
    Utils.crossProduct(double[] v1, double[] v2, double[] result, Matrix jacobian1, Matrix jacobian2)
    Computes the cross product of two vectors of length 3 The cross product of two vectors a and b is denoted as 'axb' or 'a^b', resulting in a perpendicular vector to both a and b vectors.
    static double[]
    Utils.crossProduct(double[] v1, double[] v2, Matrix jacobian1, Matrix jacobian2)
    Computes the cross product of two vectors of length 3 The cross product of two vectors a and b is denoted as 'axb' or 'a^b', resulting in a perpendicular vector to both a and b vectors.
    static Matrix
    Utils.crossProduct(double[] v, Matrix m)
    Computes the cross product of one vector of length 3 and N vectors of length 3.
    static void
    Utils.crossProduct(double[] v, Matrix m, Matrix result)
    Computes the cross product of one vector of length 3 and N vectors of length 3.
    static double
    Utils.det(Matrix m)
    Computes determinant of provided matrix.
    static void
    Matrix.diagonal(double[] diagonal, Matrix result)
    Makes provided result matrix a diagonal matrix containing provided elements in the diagonal.
    static double
    ArrayUtils.dotProduct(double[] firstOperand, double[] secondOperand, Matrix jacobianFirst, Matrix jacobianSecond)
    Computes the dot product of provided arrays as the sum of the product of the elements of both arrays.
    static double
    Utils.dotProduct(double[] firstOperand, double[] secondOperand, Matrix jacobianFirst, Matrix jacobianSecond)
    Computes the dot product of provided arrays as the sum of the product of the elements of both arrays.
    static double
    Utils.dotProduct(Matrix firstOperand, Matrix secondOperand)
    Computes the dot product of provided matrices, as the sum of the product of the elements on both matrices, assuming that both represent column vectors.
    static double
    Utils.dotProduct(Matrix firstOperand, Matrix secondOperand, Matrix jacobianFirst, Matrix jacobianSecond)
    Computes the dot product of provided matrices, as the sum of the product of the elements on both matrices, assuming that both represent column vectors.
    void
    Computes element by element product (i.e.
    void
    Matrix.elementByElementProduct(Matrix other, Matrix result)
    Computes element by element product (i.e.
    Computes element by element product (i.e.
    boolean
    Matrix.equals(Matrix other)
    Checks if provided matrix has exactly the same contents as this matrix instance.
    boolean
    Matrix.equals(Matrix other, double threshold)
    Checks if provided matrix has contents similar to this matrix by checking that all values have a maximum difference equal to provided threshold and same size.
    static void
    Matrix.fillWithGaussianRandomValues(double mean, double standardDeviation, Matrix result)
    Fills provided matrix with random Gaussian values with provided mean and standard deviation
    static void
    Matrix.fillWithGaussianRandomValues(double mean, double standardDeviation, Random random, Matrix result)
    Fills provided matrix with random Gaussian values with provided mean and standard deviation.
    static void
    Matrix.fillWithUniformRandomValues(double minValue, double maxValue, Matrix result)
    Fills provided matrix with random uniform values ranging from minValue to maxValue.
    static void
    Matrix.fillWithUniformRandomValues(double minValue, double maxValue, Random random, Matrix result)
    Fills provided matrix with random uniform values ranging from minValue to maxValue.
    void
    EconomyQRDecomposer.getH(Matrix h)
    Computes the Householder vectors and store them in provided matrix.
    void
    LUDecomposer.getL(Matrix l)
    Fills provided matrix instance with the pivot corrected Lower triangular matrix resulting from LU decomposition for provided input matrix.
    double
    FrobeniusNormComputer.getNorm(Matrix m)
    Computes norm of provided matrix.
    double
    InfinityNormComputer.getNorm(Matrix m)
    Computes norm of provided matrix.
    double
    NormComputer.getNorm(double[] array, Matrix jacobian)
    Computes norm of provided array and stores the jacobian into provided instance.
    abstract double
    NormComputer.getNorm(Matrix m)
    Computes norm of provided matrix.
    double
    OneNormComputer.getNorm(Matrix m)
    Computes norm of provided matrix.
    void
    SingularValueDecomposer.getNullspace(double singularValueThreshold, Matrix nullspace)
    Sets into provided matrix null-space of provided input matrix, which spans a subspace of dimension equal to the nullity of input matrix.
    void
    SingularValueDecomposer.getNullspace(Matrix nullspace)
    Sets into provided matrix null-space of provided input matrix, which spans a subspace of dimension equal to the nullity of input matrix.
    void
    LUDecomposer.getPivottedL(Matrix pivottedL)
    Fills provided matrix instance with the Lower triangular matrix resulting from LU decomposition before correcting any possible pivots.
    void
    EconomyQRDecomposer.getQ(Matrix q)
    Computes the economy-sized orthogonal factor matrix and stores it into provided matrix.
    void
    EconomyQRDecomposer.getR(Matrix r)
    Computes upper triangular factor matrix and stores it into provided matrix.
    void
    SingularValueDecomposer.getRange(double singularValueThreshold, Matrix range)
    Sets into provided range matrix the Range space of provided input matrix, which spans a subspace of dimension equal to the rank of input matrix.
    void
    SingularValueDecomposer.getRange(Matrix range)
    Sets into provided range matrix the Range space of provided input matrix, which spans a subspace of dimension equal to the rank of input matrix.
    void
    Matrix.getSubmatrix(int topLeftRow, int topLeftColumn, int bottomRightRow, int bottomRightColumn, Matrix result)
    Obtains a sub-matrix of current matrix instance.
    void
    LUDecomposer.getU(Matrix u)
    Fills provided matrix instance with the Upper triangular matrix resulting from LU decomposition for provided input matrix.
    void
    SingularValueDecomposer.getW(Matrix m)
    Copies diagonal matrix into provided instance containing all singular values on its diagonal after Singular Value matrix decomposition, which consists on decomposing a matrix using the following expression: A = U * S * V'.
    static void
    Matrix.identity(Matrix m)
    Sets values into provided matrix to make it an identity matrix (all elements in the diagonal equal to one, and remaining elements to zero).
    private void
    Matrix.internalAdd(Matrix other, Matrix result)
    Method to internally add two matrices.
    private void
    Method to internally compute element by element product of two matrices.
    private void
    SingularValueDecomposer.internalGetNullspace(int nullity, double singularValueThreshold, Matrix nullspace)
    Internal method to copy null-space vector values into provided matrix.
    private void
    SingularValueDecomposer.internalGetRange(int rank, double singularValueThreshold, Matrix range)
    Internal method to copy range space vector values into provided matrix.
    private void
    Matrix.internalGetSubmatrix(int topLeftRow, int topLeftColumn, int bottomRightRow, int bottomRightColumn, Matrix result)
    Internal method to retrieve a sub-matrix of current matrix instance.
    private void
    Matrix.internalMultiply(Matrix other, double[] resultBuffer, int[] resultColumnIndex)
    Method to internally multiply two matrices.
    private void
    Matrix.internalMultiply(Matrix other, Matrix result)
    Method to internally multiply two matrices.
    private void
    Matrix.internalMultiplyKronecker(Matrix other, double[] resultBuffer, int[] resultColumnIndex)
    Method to internally compute the Kronecker product between two matrices.
    private void
    Matrix.internalMultiplyKronecker(Matrix other, Matrix result)
    Method to internally compute the Kronecker product between two matrices.
    private static void
    Utils.internalSkewMatrix(Matrix m, Matrix result, boolean columnwise)
    Internal method to compute skew matrix
    private void
    Matrix.internalSubtract(Matrix other, Matrix result)
    Method to internally subtract two matrices.
    private void
    Matrix.internalTranspose(Matrix result)
    Method to internally compute matrix transposition.
    static void
    GaussJordanElimination.inverse(Matrix a)
    Computes inverse of matrix "a".
    static void
    Utils.inverse(double[] array, Matrix result)
    Computes array pseudo-inverse considering it as a column matrix and stores the result in provided result matrix.
    static Matrix
    Utils.inverse(Matrix m)
    Computes matrix inverse if provided matrix is squared, or pseudo-inverse otherwise.
    static void
    Utils.inverse(Matrix m, Matrix result)
    Computes matrix inverse if provided matrix is squared, or pseudo-inverse otherwise and stores the result in provided result matrix.
    static boolean
    Checks if the matrix is orthogonal (its transpose is its inverse).
    static boolean
    Utils.isOrthogonal(Matrix m, double threshold)
    Checks if the matrix is orthogonal (its transpose is its inverse).
    static boolean
    Checks if the matrix is orthonormal up to DEFAULT_ORTHOGONAL_THRESHOLD (it is orthogonal and its Frobenius norm is one)
    static boolean
    Utils.isOrthonormal(Matrix m, double threshold)
    Checks if the matrix is orthonormal (it is orthogonal and its Frobenius norm is one)
    static boolean
    Check if the matrix is symmetric.
    static boolean
    Utils.isSymmetric(Matrix m, double threshold)
    Check if the matrix is symmetric.
    void
    Matrix.multiply(Matrix other)
    Multiplies this matrix with provided matrix.
    void
    Matrix.multiply(Matrix other, Matrix result)
    Multiplies another matrix to this matrix instance and stores the result in provided result matrix.
    Multiplies this matrix with provided matrix and returns the result as a new instance.
    private void
    Matrix.multiplyByScalar(double scalar, Matrix result)
    Computes product by scalar of this instance multiplying all its elements by provided scalar value and storing the results in provided result matrix.
    void
    Matrix.multiplyKronecker(Matrix other)
    Computes the Kronecker product of this matrix with provided matrix and updates this matrix with the result of the multiplication.
    void
    Matrix.multiplyKronecker(Matrix other, Matrix result)
    Computes the Kronecker product with provided matrix and stores the result in provided result matrix.
    Computes the Kronecker product with provided matrix and returns the result as a new instance.
    static double
    FrobeniusNormComputer.norm(double[] array, Matrix jacobian)
    Computes norm of provided array and stores the jacobian into provided instance.
    static double
    FrobeniusNormComputer.norm(Matrix m)
    Computes norm of provided matrix.
    static double
    InfinityNormComputer.norm(double[] array, Matrix jacobian)
    Computes norm of provided array and stores the jacobian into provided instance.
    static double
    InfinityNormComputer.norm(Matrix m)
    Computes norm of provided matrix.
    static double
    OneNormComputer.norm(double[] array, Matrix jacobian)
    Computes norm of provided array and stores the jacobian into provided instance.
    static double
    OneNormComputer.norm(Matrix m)
    Computes norm of provided matrix.
    static double
    Utils.norm1(Matrix m)
    Computes one norm of provided input matrix.
    static double
    Utils.norm2(Matrix m)
    Computes two norm of provided input matrix.
    static void
    ArrayUtils.normalize(double[] v, double[] result, Matrix jacobian)
    Normalizes provided array and computes corresponding jacobian.
    static void
    ArrayUtils.normalize(double[] v, Matrix jacobian)
    Normalizes provided array, updates its values and computes corresponding jacobian.
    static double[]
    ArrayUtils.normalizeAndReturnNew(double[] v, Matrix jacobian)
    Normalizes provided array and computes corresponding jacobian.
    static double
    Utils.normF(Matrix m)
    Computes Frobenius norm of provided input matrix.
    static double
    Utils.normInf(Matrix m)
    Computes infinity norm of provided input matrix.
    static void
    GaussJordanElimination.process(Matrix a, double[] b)
    Computes Gauss-Jordan elimination by attempting to solve linear system of equations a * x = b.
    static void
    GaussJordanElimination.process(Matrix a, Matrix b)
    Computes Gauss-Jordan elimination by attempting to solve linear system of equations a * x = b.
    static Matrix
    Computes Moore-Penrose pseudo-inverse of provided matrix.
    static int
    Utils.rank(Matrix m)
    Computes rank of provided matrix.
    static void
    Utils.schurc(Matrix m, int pos, boolean fromStart, boolean sqrt, Matrix result)
    Computes the Schur complement of a symmetric matrix.
    static void
    Utils.schurc(Matrix m, int pos, boolean fromStart, boolean sqrt, Matrix result, Matrix iA)
    Computes the Schur complement of a symmetric matrix.
    static void
    Utils.schurc(Matrix m, int pos, boolean fromStart, Matrix result)
    Computes the Schur complement of a symmetric matrix, returning always the full Schur complement.
    static void
    Utils.schurc(Matrix m, int pos, boolean fromStart, Matrix result, Matrix iA)
    Computes the Schur complement of a symmetric matrix, returning always the full Schur complement.
    static void
    Utils.schurc(Matrix m, int pos, Matrix result)
    Computes the Schur complement of the sub-matrix A within a symmetric matrix, returning always the full Schur complement.
    static void
    Utils.schurc(Matrix m, int pos, Matrix result, Matrix iA)
    Computes the Schur complement of the sub-matrix A within a symmetric matrix, returning always the full Schur complement.
    static Matrix
    Utils.schurcAndReturnNew(Matrix m, int pos)
    Computes the Schur complement of the sub-matrix A within a symmetric matrix, returning always the full Schur complement.
    static Matrix
    Utils.schurcAndReturnNew(Matrix m, int pos, boolean fromStart)
    Computes the Schur complement of a symmetric matrix, returning always the full Schur complement.
    static Matrix
    Utils.schurcAndReturnNew(Matrix m, int pos, boolean fromStart, boolean sqrt)
    Computes the Schur complement of a symmetric matrix.
    static Matrix
    Utils.schurcAndReturnNew(Matrix m, int pos, boolean fromStart, boolean sqrt, Matrix iA)
    Computes the Schur complement of a symmetric matrix.
    static Matrix
    Utils.schurcAndReturnNew(Matrix m, int pos, boolean fromStart, Matrix iA)
    Computes the Schur complement of a symmetric matrix, returning always the full Schur complement.
    static Matrix
    Utils.schurcAndReturnNew(Matrix m, int pos, Matrix iA)
    Computes the Schur complement of the sub-matrix A within a symmetric matrix, returning always the full Schur complement.
    void
    CholeskyDecomposer.setInputMatrix(Matrix inputMatrix)
    Sets reference to input matrix to be decomposed.
    void
    Decomposer.setInputMatrix(Matrix inputMatrix)
    Sets reference to input matrix to be decomposed.
    void
    EconomyQRDecomposer.setInputMatrix(Matrix inputMatrix)
    Sets reference to input matrix to be decomposed.
    void
    LUDecomposer.setInputMatrix(Matrix inputMatrix)
    Sets reference to input matrix to be decomposed.
    void
    QRDecomposer.setInputMatrix(Matrix inputMatrix)
    Sets reference to input matrix to be decomposed.
    void
    RQDecomposer.setInputMatrix(Matrix inputMatrix)
    Sets reference to input matrix to be decomposed.
    void
    SingularValueDecomposer.setInputMatrix(Matrix inputMatrix)
    Sets reference to input matrix to be decomposed.
    void
    Matrix.setSubmatrix(int topLeftRow, int topLeftColumn, int bottomRightRow, int bottomRightColumn, Matrix submatrix)
    Copies elements from provided sub-matrix into this matrix at provided location.
    void
    Matrix.setSubmatrix(int topLeftRow, int topLeftColumn, int bottomRightRow, int bottomRightColumn, Matrix submatrix, int submatrixTopLeftRow, int submatrixTopLeftColumn, int submatrixBottomRightRow, int submatrixBottomRightColumn)
    Copies elements from provided sub-matrix into this matrix at provided location
    static void
    Utils.skewMatrix(double[] array, Matrix result)
    Computes the skew-symmetric matrix of provided vector of length 3 and stores the result in provided matrix.
    static void
    Utils.skewMatrix(double[] array, Matrix result, Matrix jacobian)
    Computes the skew-symmetric matrix of provided vector of length 3 and stores the result in provided matrix.
    static Matrix
    Utils.skewMatrix(Matrix m)
    Computes the skew-symmetric matrix of provided matrix of size 3x1 or 13.
    static void
    Utils.skewMatrix(Matrix m, Matrix result)
    Computes the skew-symmetric matrix of provided matrix of size 3x1 or 13.
    static void
    Utils.skewMatrix(Matrix m, Matrix result, Matrix jacobian)
    Computes the skew-symmetric matrix of provided matrix of size 3x1 or 13.
    CholeskyDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B.
    void
    CholeskyDecomposer.solve(Matrix b, Matrix result)
    Solves a linear system of equations of the following form: A * X = B.
    EconomyQRDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B, where A is the input matrix provided for QR decomposition, X is the solution to the system of equations, and B is the parameters vector/matrix.
    EconomyQRDecomposer.solve(Matrix b, double roundingError)
    Solves a linear system of equations of the following form: A * X = B, where A is the input matrix provided for QR decomposition, X is the solution to the system of equations, and B is the parameters vector/matrix.
    void
    EconomyQRDecomposer.solve(Matrix b, double roundingError, Matrix result)
    Solves a linear system of equations of the following form: A * X = B, where A is the input matrix provided for QR decomposition, X is the solution to the system of equations, and B is the parameters vector/matrix.
    void
    EconomyQRDecomposer.solve(Matrix b, Matrix result)
    Solves a linear system of equations of the following form: A * X = B, where A is the input matrix provided for QR decomposition, X is the solution to the system of equations, and B is the parameters vector/matrix.
    LUDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B.
    LUDecomposer.solve(Matrix b, double roundingError)
    Solves a linear system of equations of the following form: A * X = B.
    void
    LUDecomposer.solve(Matrix b, double roundingError, Matrix result)
    Solves a linear system of equations of the following form: A * X = B.
    void
    LUDecomposer.solve(Matrix b, Matrix result)
    Solves a linear system of equations of the following form: A * X = B.
    QRDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B.
    QRDecomposer.solve(Matrix b, double roundingError)
    Solves a linear system of equations of the following form: A * X = B.
    void
    QRDecomposer.solve(Matrix b, double roundingError, Matrix result)
    Solves a linear system of equations of the following form: A * X = B.
    void
    QRDecomposer.solve(Matrix b, Matrix result)
    Solves a linear system of equations of the following form: A * X = B.
    SingularValueDecomposer.solve(Matrix b)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    SingularValueDecomposer.solve(Matrix b, double singularValueThreshold)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    void
    SingularValueDecomposer.solve(Matrix b, double singularValueThreshold, Matrix result)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    void
    SingularValueDecomposer.solve(Matrix b, Matrix result)
    Solves a linear system of equations of the following form: A * X = B using the pseudo-inverse to find the least squares solution.
    static double[]
    Utils.solve(Matrix m, double[] b)
    Solves a linear system of equations of the form: m * x = b.
    static void
    Utils.solve(Matrix m, double[] b, double[] result)
    Solves a linear system of equations of the form m * x = b, where b is assumed to be the parameters column vector, x is the returned matrix containing the solution and m is the matrix of the linear system of equations.
    static Matrix
    Utils.solve(Matrix m, Matrix b)
    Solves a linear system of equations of the form: m * x = b.
    static void
    Utils.solve(Matrix m, Matrix b, Matrix result)
    Solves a linear system of equations of the form: m * x = b.
    void
    Matrix.subtract(Matrix other)
    Subtracts provided matrix from this instance.
    void
    Matrix.subtract(Matrix other, Matrix result)
    Subtracts another matrix from this matrix instance and stores the result in provided result matrix.
    Subtracts provided matrix from this instance and returns the result as a new matrix instance.
    void
    Matrix.symmetrize(Matrix result)
    Symmetrizes this instance and stores the result into provided instance.
    static double
    Utils.trace(Matrix m)
    Computes trace of provided matrix.
    void
    Matrix.transpose(Matrix result)
    Transposes current matrix and stores result in provided matrix.
    Constructors in com.irurueta.algebra with parameters of type Matrix
    Modifier
    Constructor
    Description
     
    Constructor of this class.
    protected
    Decomposer(Matrix inputMatrix)
    Constructor of this class.
     
    Constructor of this class.
     
    LUDecomposer(Matrix inputMatrix)
    Constructor of this class.
     
    Copy constructor.
     
    QRDecomposer(Matrix inputMatrix)
    Constructor of this class.
     
    RQDecomposer(Matrix inputMatrix)
    Constructor of this class.
     
    Constructor of this class.
     
    SingularValueDecomposer(Matrix inputMatrix, int maxIters)
    Constructor of this class.
  • Uses of Matrix in com.irurueta.statistics

    Fields in com.irurueta.statistics declared as Matrix
    Modifier and Type
    Field
    Description
    private Matrix
    MultivariateNormalDist.cov
    Covariance of Gaussian distribution.
    private Matrix
    MultivariateGaussianRandomizer.covariance
    Covariance matrix.
    private Matrix
    MultivariateNormalDist.covBasis
    Basis in which the covariance matrix is expressed.
    private Matrix
    MultivariateGaussianRandomizer.l
    Lower triangular Cholesky decomposition of covariance matrix.
    Methods in com.irurueta.statistics that return Matrix
    Modifier and Type
    Method
    Description
    MultivariateGaussianRandomizer.getCovariance()
    Returns covariance to be used for Gaussian random value generation.
    MultivariateNormalDist.getCovariance()
    Gets matrix containing covariance of this multivariate Gaussian distribution.
    MultivariateNormalDist.getCovarianceBasis()
    Basis containing on each column the direction of each variance in the multidimensional Gaussian distribution, which is obtained from provided covariance matrix.
    Methods in com.irurueta.statistics with parameters of type Matrix
    Modifier and Type
    Method
    Description
    double
    MultivariateNormalDist.cdf(double[] x, Matrix basis)
    Evaluates the cumulative distribution function (c.d.f.) of a Gaussian distribution having current mean and covariance values.
    void
    MultivariateNormalDist.JacobianEvaluator.evaluate(double[] x, double[] y, Matrix jacobian)
    Evaluates multivariate point
    void
    MultivariateNormalDist.getCovariance(Matrix result)
    Gets matrix containing covariance of this multivariate Gaussian distribution.
    void
    MultivariateNormalDist.invcdf(double[] p, double[] result, Matrix basis)
    Evaluates the inverse cumulative distribution function of a multivariate Gaussian distribution for current mean and covariance values and provided probability values for each dimension of the multivariate Gaussian distribution.
    double[]
    MultivariateNormalDist.invcdf(double[] p, Matrix basis)
    Evaluates the inverse cumulative distribution function of a multivariate Gaussian distribution for current mean and covariance values and provided probability values for each dimension of the multivariate Gaussian distribution.
    void
    MultivariateNormalDist.invcdf(double p, double[] result, Matrix basis)
    Evaluates the inverse cumulative distribution function of a multivariate Gaussian distribution for current mean and covariance values and provided probability value.
    double[]
    MultivariateNormalDist.invcdf(double p, Matrix basis)
    Evaluates the inverse cumulative distribution function of a multivariate Gaussian distribution for current mean and covariance values and provided probability value.
    static boolean
    MultivariateNormalDist.isValidCovariance(Matrix cov)
    Indicates whether provided matrix is a valid covariance matrix.
    MultivariateNormalDist.propagate(MultivariateNormalDist.JacobianEvaluator evaluator, double[] mean, Matrix covariance)
    Evaluates the Jacobian and a multivariate function at a certain mean point and computes the non-linear propagation of Gaussian uncertainty through such function at such point.
    static void
    MultivariateNormalDist.propagate(MultivariateNormalDist.JacobianEvaluator evaluator, double[] mean, Matrix covariance, MultivariateNormalDist result)
    Evaluates the Jacobian and a multivariate function at a certain mean point and computes the non-linear propagation of Gaussian uncertainty through such function at such point.
    void
    MultivariateNormalDist.setCovariance(Matrix cov)
    Sets covariance of this multivariate Gaussian distribution.
    void
    MultivariateNormalDist.setCovariance(Matrix cov, boolean validateSymmetricPositiveDefinite)
    Sets covariance of this multivariate Gaussian distribution.
    final void
    MultivariateGaussianRandomizer.setMeanAndCovariance(double[] mean, Matrix covariance)
    Sets mean and covariance to generate multivariate Gaussian random values.
    final void
    MultivariateNormalDist.setMeanAndCovariance(double[] mu, Matrix cov)
    Sets mean and covariance of this multivariate Gaussian distribution.
    final void
    MultivariateNormalDist.setMeanAndCovariance(double[] mu, Matrix cov, boolean validateSymmetricPositiveDefinite)
    Sets mean and covariance of this multivariate Gaussian distribution.
    Constructors in com.irurueta.statistics with parameters of type Matrix
    Modifier
    Constructor
    Description
     
    MultivariateGaussianRandomizer(double[] mean, Matrix covariance)
    Constructor.
     
    MultivariateGaussianRandomizer(Random internalRandom, double[] mean, Matrix covariance)
    Constructor.
     
    MultivariateNormalDist(double[] mean, Matrix covariance)
    Constructor.
     
    MultivariateNormalDist(double[] mean, Matrix covariance, boolean validateSymmetricPositiveDefinite)
    Constructor.